Algorithmic learning of XML Schema
definitions from XML data

Kore Nordmann

March 24, 2011

Abstract

XML currently is the main syntax for data exchange. It is the base syntax for nearly
all data exchange happening on the internet, which, for example, includes XHTML
and SOAP. Besides these well-specified formats there are also a lot protocols and
interfaces available, which use XML as a syntax, but not have any specified schema.
If a schema exists, this facilitates automation, optimization of search, integration,
translation and processing of XML data. [3, 9, 11, 13, 17, 22, 23, 26, 30, 38| It is
therefore desired to provide means to algorithmically inference schemas for existing
XML data. This work outlines the existing algorithms, which can be used for schema
inference, extends those algorithms based on an analysis of real-world XML Schema
definitions and evaluates those algorithms based on example data extracted from real-
world XML data.

Contents

L.

1.

IT.

State of the art

Schema analysis

1.1. Schema usage
1.2. Schema structure Lo
1.2.1. Regular expressions oL
1.2.2. XML Schema type properties
Schema learning algorithms
2.1. Inferring Single Occurrence Regular Expressions
2.1.1. Definitions
2.1.2. Inferring SOAs
2.1.3. From SOAto SORE
2.2. Inferring Chain Regular Expressions.
2.3. Inferring k-Occurrence Regular Expressions
2.4. XML Schema definitions o0
2.4.1. Structure of XML Schema
2.4.2. Inference of local XML Schema definitions
2.4.3. Minimization oL
Development

Schema analysis

3.1. Finding XML Schema definitions
3.2. Schema downloading oo
3.3. Schema normalization
3.3.1. Extract anonymous types
3.3.2. Inlining groupso
3.3.3. Ewvaluating inheritance
3.3.4. Other simplifications
3.4. Schema ranking
3.4.1. Schema support

3.4.2. PageRank

13
13
13
14
15

17
18
18
19
19
21
21
23
23
26
29

33

37
37
38
39
40
41
41
42
42
42
43

Contents

3.5. Calculation of statistics Lo
3.5.1. Child patterns
3.5.2. Typing mechanism
3.5.3. Comparison

3.6. Conclusion

4. Schema learning

4.1. XML Schema definition 0oL
4.2. Regular expression learning enhancements
4.2.1. Extending REWRITE
4.2.2. Extending CRX
4.3. Typemerging e
4.3.1. The algorithm
4.3.2. Implementation of similar()
4.3.3. Attribute comparison
4.3.4. Element comparison
4.4. Evaluation Lo
4.4.1. Source datasets
4.4.2. Extracted examples L
4.4.3. Verification
4.4.4. Experiment settings Lo
4.4.5. Evaluationresults 0oL
4.5. Software

II1. Outlook

IV. Appendix

4.6. XML Source code examples oL
4.6.1. Store
4.6.2. Empty Types

4.6.3. Attributes

4.6.4. Ancestor Depth

4.6.5. Reoccurent
4.7. Evaluation results

List of Tables
List of Figures

Bibliography

73

77
79
79
79
80
80
81
83

87
89

91

Introduction

XML currently is the main syntax for data exchange. It is the base syntax for nearly all
data exchange happening on the internet, which includes XHTML and SOAP. Besides
these well-specified formats there are also a lot protocols and interfaces available,
which use XML as a syntax, but not have any specified schema. If a schema exists, this
facilitates automation, optimization of search, integration, translation and processing
of XML data. [3, 9, 11, 13, 17, 22, 23, 26, 30, 38] It is therefore desired to provide
means to algorithmically inference schemas for existing XML data.

Earlier approaches like “Inference of concise DTDs from XML data” [6] implement
algorithms to inference Document Type Definitions from sets of XML documents.
Since 2001 [34] the W3C worked on a new schema language, XML Schema, which
exceeds the power of Document Type Definitions [36] and itself is XML. Extending
the Document Type Definition inferencing algorithms to the contextual power of XML
Schema definitions is therefore desired.

Inferencing Document Type Definitions requires to solve mainly one problem, to
inference concise regular expressions from a set of words. The algorithms REWRITE
and CRX described in “Inference of concise DTDs from XML data” are able to learn
regular expressions for Document Type Definitions and are discussed and extended
in this work.

This work can also be used for inferencing XML Schema definitions, as shown in
“Inferring XML Schema Definitions from XML Data” [7], since the regular expressions
available in XML Schema form a superset of the regular expressions available in
Document Type Definitions. The additionally available syntactical features in XML
Schema, which are not used by the algorithms mentioned before are Counting patterns
and the <all> syntax for sets of children with irrelevant order.

The main difference between Document Type Definitions and XML Schema defini-
tions is the fact, that Document Type Definitions only allow to define one type for
each element label. This means, that each label has exactly one regular expression
associated, which defines the children which may occur below the given element. XML
Schema allows to define types of elements based on the element name or the ancestors
of an element. Also the same type may be used for multiple elements with different
labels.

This structural difference makes it harder to learn concise XML Schema definitions.
In “Inferring XML schema definitions from XML data” [7] the authors show an ap-
proach of learning k-local XML Schema definitions. This approach results in far too
many types, which requires merging of types. The aim is to reduce a set of types with

Contents

similar or same regular expressions into one single XML Schema type definition. The
aforementioned paper introduces a simple distance metric on the inferenced child pat-
terns and merges them based on that. Different extensions for this will be discussed
and evaluated in this paper.

In this thesis the types not only learned k-local, but based on the full ancestor
path, and experiment with different approaches for merging the types, based on the
analysis of real-world XML Schema definitions. Based on real-world data training
and verification data was extracted to evaluate the algorithms.

Part 1.

State of the art

Overview

This part outlines the current state of the art in schema inferencing from XML data.
Since no formal metric exists, which is able to judge the quality of inferenced schemas
there are usually two steps involved in developing algorithms for schema inference:

e Analysis of existing schemas

Analysing existing real-world schemas provides insight about the used schema
language features and the structure of schemas. This knowledge can be reused
when developing new algorithms for schema inference.

e Developing algorithms

Developing new algorithms for schema inference.

The following two chapters start with describing the current state of schema analysis
which is relevant to this work and the algorithms described in the following chapter.
The algorithms described build the base for the work in the next part of this work.

11

Chapter 1.

Schema analysis

The problem setting of schema inference implies that schemas can only be learned
from positive data only. Gold [20] showed that it is not possible to learn the class
of all regular expressions from positive examples only. Thus it is necessary to find
out about common characteristics of schemas, which are already used, to develop
algorithms which can learn meaningful subsets of the target schema language.

For this the schema languages need to be structurally analyzed and the schemas
instances already used can be statistically analyzed to find out about the used features.
In chapter II a custom analysis is presented, which bases on already existing analysis
presented in this chapter.

1.1. Schema usage

Barbosa et al. [2, 28] showed that only about half of the XML documents they found
on the web are referring to a schema at all. Since the other XML documents do not
have any defined structure no real statements on their structure and complexity can
be made.

In another study Bex et al. [5, 27] showed that about two-thirds of the schemas
found on the web and in schema repositories are not valid according to the W3C
XML Schema specification [36]. This renders those schemas mostly useless for their
application, but it might still be possible to analyze them structurally, as shown in
chapter II. A similar observation was made by Sahuguet [1] regarding Document Type
Definitions.

1.2. Schema structure

XML Schema and Document Type Definition both use regular expression to define the
content models or child patterns for elements (see section 2.1 for details). Analysing
the used regular expressions is one of the most important parts.

13

Chapter 1. Schema analysis

1.2.1. Regular expressions

The structure of regular expressions in schemas has for example been analyzed by
Bex et al. [5]. In this study 109 Document Type Definitions and 93 XML Schema
definitions were downloaded from the XML Cover pages [10] and analyzed.

They found out that the vast majority of the regular expressions found in the
schemas are simple, i.e. 92% in Document Type Definitions and 97% in XML Schema
definitions, where a simple regular expression is defined as:

Definition 1:

A base symbol is a regqular expression a, a?, or a* where a € ¥; a factor is of the form
e, €%, or e? where e is a disjunction of base symbols. A simple regular expression
is e, 0, or a sequence of factors.

This definition matches the definition of CHARES in structure, which are discussed
later in this work in subsection 1.2.2. The authors claim in a later paper [6] that
99% of the analyzed expressions are indeed CHARES, which also means, that every
element in the regular expression only occurs once.

The occurrence counts of elements in regular expressions are important, since reg-
ular expressions with only one occurrence for each element are possible to learn from
positive examples only. [6] Another analysis [12] based on a larger dataset supported
the numbers by finding out that 97.57% of the expressions were simple. In both
papers these statistics include PCDATA, ANY and EMPTY regular expressions.

Most of the existing analysis focussed on Document Type Definition schema prop-
erties. The analysis in “PG 530: Pattern Based Schema Languages” [12] included
some XML Schema specific aspects, like counting the occurrence of the <all> regular
expression syntax, which occurred in 6.52% of all analyzed schemas. No paper could
be found which analyzed the usage of counting patterns in XML Schema regular
expressions.

XML Schema makes it possible to not only use 7, * and + as quantifiers, but also
provide custom counting patterns as quantifiers, so that a2, 5 would mean, that the
element a may occur from 2 to 5 times. Just like <all> this can also be expressed
using the common syntax but it would be interesting to see how broadly it is used in
real XML Schema definitions. Counting patterns in XML Schema can be assigned
not only to elements, but also to sequences and choices by using the minOccurs and
max0Occurs attributes with values other then 0, 1 and unbounded.

14

1.2. Schema structure

1.2.2. XML Schema type properties

XML Schema employs a different typing mechanism then Document Type Definition,
which makes it possible to associate different content models with elements of the
same name, based on the ancestors of the element. This is discussed in more detail
in 4.1.

Bex et al. [5] analyzed this based on their small set of only 30 XML Schema
definitions and found out that only 5 of those schemas (15%) used the XML Schema
typing mechanism — all other schemas could as well be expressed by Document Type
Definitions. The type for the element depended on the direct parent in all of these
cases.

In “PG 530: Pattern Based Schema Languages” [12] the same analysis was per-
formed on a much larger input set of XML Schema definitions which showed that
22.48% of the XML Schema definitions used the XML Schema typing mechanism.

All the mentioned papers performed additional analysis with different focal points.
The results mentioned here are relevant to this work and summarizing them all would
exceed the scope of this work.

15

Chapter 2.
Schema learning algorithms

The early work in this area focussed on learning Document Type Definitions, which
reduces to learning concise regular expression from positive example strings. [6] The
paper “Inference of Concise DTDs from XML Data” [6] presents three algorithms for
learning CHAREs and SOREs.

Since Document Type Definitions can be abstracted by context-free grammars with
regular expressions (RE) on the right side, learning Document Type Definitions re-
duces to learning of REs describing all strings occurring below that element name in
the XML corpus. Like Gold [20] shows the class of all REs cannot be learned from
positive examples only. The challenge was to identify subclasses of RE which can
be learned from positive examples only, are deterministic RE, which is required for
Document Type Definition, and are concise.

“Inference of Concise DTDs from XML Data” identifies two such classes of regular
expressions:

e The class of Single Occurrence Regular Expressions SORE, which are
regular expressions, where every element name occurs only once.

e The class of Chain Regular Expressions CHARE, which are SOREs, which
contain of a sequence of factors fi..f,, where each factor is a non-empty choice
over element names, optionally with a multiplier. The factors follow the form
(aq + .. + ax)?, where a; is an element name, k > 1 and the 7 optionally one of
the available multipliers 7, *, or +.

Since each element name only occurs once in each SORE by definition, each SORE
and therefore also each CHARE is obviously deterministic (one-unambiguous) [6, 8],
as required for Document Type Definitions.

As metioned in section 1.1 92% in Document Type Definitions and 97% in XML
Schema definitions are simple regular expression and the in [6] the authors claim
that 99% of the analyzed expressions are CHARESs.

The two algorithms REWRITE and CRX described in more detail in this chapter
will be used and extended for the use with XML Schema definitions in this work.

17

Chapter 2. Schema learning algorithms

2.1. Inferring Single Occurrence Regular Expressions

This section describes the REWRITE algorithm as presented in “Inference of Concise
DTDs from XML Data” [6].

2.1.1. Definitions

For this chapter X is a finite set of symbols, the elements names of the schema.
Every a € ¥ is a regular expression, as well as rr’, r + 1/, r?, r* and r+ are regular
expressions, if r and ' are regular expressions. The language defined by a regular
expression is denoted as L(r).

By RE(Y) the class of all regular expressions over ¥ is denoted. Document Type
Definitions are abstracted as a mapping from ¥ symbols to regular expressions over
PIE

Definition 2:

A Document Type Definition is a pair (d, s) where d is a function that maps %-symbols
to reqular expressions over ¥ (RE(X)), and s € ¥ is the start symbol. A tree satisfies
the Document Type Definition if its root is labeled by s for every node u with label a,
the sequence ay..a, of labels of its children matches the reqular expression d(a).

The regular expression d(a) is also referred to as the element definition or the con-
tent model of a. The Document Type Definition specification additionally requires
the regular expressions to be deterministic, which can be ignored here, since the pre-
sented algorithms are limited to SOREs, which are always deterministic as mentioned
earlier.

For the presented algorithms an automaton is used, which deviate from the usual
automaton definition and is defined as:

Definition 3:

For a set S, an S-labeled graph G is a tuple (V, E,\, Sin, Sout) where V' is a finite set
of nodes, E C'V x 'V is the edge relation, X\ 1V Sin, Sour — S 15 the labeling function,
and Sin, Sout € V' are the source and sink, respectively.

The idea behind this, that every edge carries the label of the state it points to. s;,
and s,,; play the role of the unique start and end state.

Definition 4:
An automaton s a X-labeled graph.

The definition of a SOA continues intuitively from that:

18

2.1. Inferring Single Occurrence Regular Expressions

Definition 5:
An Single Occurrence Automaton (SOA) is a automaton, where every ¥ symbol is
assigned to at most one state.

The paper also says that a SOA A is equivalent to an SORE when there exists an
SORE 7 such that L(A) = L(r).

2.1.2. Inferring SOAs

A SOA can be inferenced from a set of input strings W = {wy,..,w,} by splitting
the input words w; into their 2-grams and adding nodes and edges for each element
of the 2-gram G2, . In this context in “Inference of Concise DTDs from XML Data”
also the following proposition is proved, which provides the background for this:

Proposition 1:
FEvery SORFE is 2-testable. More precisely, for every SORFE r, there is an up to iso-
morphism unique SOA A, such that L(r) = L(A,).

Also the algorithm 2T-INF in the paper “Inference of k-Testable Languages in the
Strict Sense and Application to Syntactic Pattern Recognition” [18] is referenced,
which infers the sets I, F' and S from a set of input strings W = {wy, .., w,} with
w; € Y. Iy are simply all fist symbols, Fyy all last symbols, and Sy = {J,-,, Gfui.

The corresponding automaton Gy can then be constructed easily from those sets:

1. Create a state for each element.
2. Create a separate initial and final state

3. Construct an edge from the initial state to each element name in Iy and an
edge from each element name in Fy to the final state.

4. Create an edge for every ab € Sy from a to b.

The result of this is a SOA describing the input strings W. An example for this
can be found in [6].

2.1.3. From SOA to SORE

The main work regarding learning of SORESs in the paper is the conversion of SOAS
to SOREs. Two different algorithms are presented, REWRITE and iDTD. While
REWRITE inferences regular expressions, which are equivalent to the provided au-
tomaton, the iDTD algorithm, “which is an adaptation of REWRITE, [..] attempts

19

Chapter 2. Schema learning algorithms

to produce an SORE which describes a (as small as possible) superset of L(Gw).” [6]
This is implemented, because not every SOA can be converted into a SORE using the
REWRITE algorithm.

Only the REWRITE algorithm will be covered in this work, since it is used later
for inferencing the regular expressions.

The REWRITE algorithm employs a state-elimination algorithm, transforming the
input automaton into a regular expression. This is done by merging several nodes
into one single node, or by removing edges from the automaton. The labels on the
given SOA are considered scalar regular expressions, and applying the reduction steps
the node labels will be replaced by more complex regular expressions, until only one
node is left, or no more reductions can be applied. The used reduction steps are:

1. DISJUNCTION
Precondition: W = {ry,..,r,} is a set of states with n > 2 such that every two
nodes 7; , r; have the same predecessor and successor set. This implies that
either (i) there are no edges in G between 71, .., 7, at all or (ii) that, for each i, j
there is an edge (75, 7;) in Gx.

Action: Remove rq,..,7,, add a new node r = ry 4 .. + r,,, redirect all incoming
and outgoing edges of rq,..,r, to r. In case of (ii) add the edge (r,r).

2. CONCATENATION
Precondition: W = {ry,..,r,} is a maximal set of states, n > 2, such that there
is an edge from every r; to r;.1 , every node besides r; has only one incoming
edge, and every node besides r, has only one outgoing edge.

Action: Remove rq,..,7,, add a new node r = r;..r,,, redirect all incoming edges
of r; and all outgoing edges of r,, to r. (In particular: if G has an edge (r,,71)
then (r,r) is added.)

3. SELF-LOOP
Precondition: (r,r) € E.

Action: Delete (r,r), relabel r by r+.

4. OPTIONAL
Precondition: Every r’ € Pred(r), Succ(r) C Succ(r’). (Thus: every node that
can be reached through r from a predecessor, can also be reached directly from
that predecessor.)

Action: Relabel r by r?, remove all edges (r/,7”) such that " € Pred(r) and
r" e Suce(r) {r}.

An example for this algorithm can be found in [6].
The paper proves, that this algorithm transforms every SOA into the equivalent
SORE if one exists. It also mentions that the complexity of this algorithm is O(n?).

20

2.2. Inferring Chain Regular Expressions

Also an extension of REWRITE is presented which is always able to produce a
SORE from a SOA, but is not very efficient for the configuration, which is guaranteed
to always produce a SORE. The paper also presents an algorithm which inferences
CHARES, a subclass of SORESs, called CRX.

2.2. Inferring Chain Regular Expressions

This section describes the CRX algorithm as presented in “Inference of Concise DTDs
from XML Data” [6], which is always able to provide a CHARE for each input lan-
guage. As mentioned earlier each CHARE also is a SORE.

The algorithm shown here will be extended later in this work to inference regular
expressions using the additional syntactical features of XML Schema regular expres-
sions.

Similar to the REWRITE algorithm the CRX algorithm operates on a set of strings,
W = {wy,..,w,}. This set of strings defines an order —y on the alphabet, which is
defined as:

a,be X a—=wb = Jw =w,.w;, € Wlw,, =aNw;,,, =b
Additionally the relation ~y C ¥ x ¥ is defined as:

arwb <= a—=yp DAL=y a

Where —7;, is the reflexive, transitive closure of —y. =~ then is obviously an
equivalence relation. Let I'y the be the set of equivalence classes if ~yy .

The equivalence classes are written in the form [ay, .., a,], and a node of the form
[a] is called a singleton.

Let <y be the partial order on I'yy, which is induced by —7j;,. For every <y, we
denote by Hy, its Hasse diagram, i.e., the graph of <y, without transitive edges.

Further we define succ(7y) as the set of nodes, which can be reached from v by a
single edge. Accordingly we define pred(v) as the set of nodes, from which with a
single edge v can be reached.

The CRX algorithm performed to build the CHARE from W is outlined in Algo-
rithm 1.

An example for this algorithm can be found in [6].

2.3. Inferring k-Occurrence Regular Expressions

The paper “Inference of Concise DTDs from XML Data” only considered Single Oc-
currence Regular Expressions, since studies in that paper showed that those are the
most common regular expressions found in schemas (See section 1.1). Further studies
like “Expressiveness and Complexity of XML Schema” showed that even for the cases

21

Chapter 2. Schema learning algorithms

Algorithm 1 CRX
Compute the set 'y of equivalence classes of ~y,

while A maximum set of singleton nodes 71, .., v,, where pred(y;) = .. = pred(y,)
and succ(y;) = .. = suce(7y,) exists do
Replace 71, .., v, by v = Ul_;7; and redirect all incoming and outgoing edges from
Y1 to 7.
end while

Compute a topological sort 74, .., of the nodes
for all i € {1,..,k} (vi = [a1,..,a,)) do
if every string in TV contains exactly one occurrence of a symbol in {aq,..,a,}
then
r() = (a1 + - + an)
else if every string in W contains at most one occurrence of a symbol in {ay, .., a, }
then
r(vi) = (a1 + .. + a,)?
else if every string in W contains at least one of aq,..,a, and there is a string
that contains at least two occurrences of symbols then
r(vi) = (a1 + ..+ an)"
else
r(vi) = (a1 + .. +an)*
end if
end for
return 'y

22

N O e W N =

2.4. XML Schema definitions

where elements occur multiple times, the number of occurrences is generally small.
[27]

For those cases the paper “Learning Deterministic Regular Expressions for the In-
ference of Schemas from XML Data” [4] introduces k-Occurrence Regular Expressions
(k-ORE), where k is the number of maximum occurrences of one element in the regu-
lar expression. SOREs are therefore 1-ORE, and the regular expression (a + b)*a, for
example, would be a 2-OREF.

The paper shows that it is possible to learn the class of deterministic k-ORE from
positive examples only and introduces an algorithm iDRegFEz, which derives deter-
ministic k-ORE for increasing values of £ and employs a minimum description length
argument to choose the best resulting regular expression.

The presented algorithm to learn a single k-ORE, 1KORE, uses a probabilistic
approach to learn a k-Occurrence Automaton (k-OA), defined equivalently to the
earlier defined SOA. For training the Baum-Welsh algorithm [32] is used, which trains
Hidden Markov Models.

The resulting k-OA is then modified by two further steps, described in the paper, to
receive a deterministic k-OA. Using the KOATOKORE algorithm the k-OA is then
transformed into a k-ORE. The KOATOKORE algorithm is described in [6], but
called +DTD in that paper.

The iDRegEzx is not investigated further in this paper, since the results of the
algorithm depend on probabilistic, which makes comparing regular expressions for
equivalence much harder, which is required for inferring XML Schema definitions, as
shown later in this work.

2.4. XML Schema definitions

The earlier sections described the learning of regular expressions, which is obviously
an essential part for learning schema definitions — for XML Schema, Document Type
Definition and RelaxNG. But XML Schema also has a typing system, which basically
allows to reuse the content model for multiple elements and which allows to have
elements with the same label to have different content models.

2.4.1. Structure of XML Schema
Consider the following XML example:

<?xml version="1.0" 7>
<store>
<sale>
<item>
<name>Potatoes</name>
<price>3.99 EUR</price>
</item>

23

=W N

© 0 N O A W N

=
(=}

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29

Chapter 2. Schema learning algorithms

</sale>
<warehouse>
<item>
<name>Potatoes</name>
<count>42</count>
</item>
</warehouse>

</store>

When writing a Document Type Definition for this XML document, it is only

possible to define one common content model for the <item> element:

<!FIEMENT store (sale, warchouse)>
<!ELEMENT sale (item+)>

<!ELIEMENT warehouse (item+)>

<!EIEMENT item (name, (count 4+ price))>

With XML Schema, on the other hand, one can define different types for the item

elements based on their ancestors. The following schema defines more specific types
for the two different <item> elements.

<?xml version="1.0"7 7>

<s

24

chema xmlns="http://www.w3. org/2001/XMLSchema”>
<element name="store” type="store” />
<complexType name="store”>
<sequence>
<element name="sale” type="sale” />
<element name="warehouse” type="warehouse” [>
</sequence>
</complexType>
<complexType name="sale ">
<sequence>
<element maxOccurs="unbounded” name="1item” type="sale_item” />
</sequence>
</complexType>
<complexType name="warehouse”>
<sequence>
<element maxOccurs="unbounded” name="1item” type="warehouse_item” /
>
</sequence>
</complexType>
<complexType name="sale_item ">
<sequence>
<element name="name” type="string” />
<element name="price” type="string” />
</sequence>
</complexType>
<complexType name="warehouse_item ”>
<sequence>
<element name="name” type="string” />
<element name="count” type="string” />

30
31
32

B oW o e

2.4. XML Schema definitions

</sequence>
</complexType>
</schema>

By introducing artificial types, an element can not only depend on direct parents,
but on any ancestors in the type tree. In fact Martens et. al. [27] showed that the
content model of an element is completely determined by the labeled path from the
root to that element.

The W3C Specification on XML Schema [36] additionally specifies the Element
Declaration Consistency, which requires multiple occurrences of one element in
one content model to use the same type. Hence the following type definition would
be illegal:

<?xml version="1.0" 7>
<schema xmlns="http: //www.ws. org/2001/XMLSchema™
<! >
<complexType name="warehouse”>
<choice>
<element maxOccurs="unbounded” name="1item” type="sale_item” />
<element maxOccurs="unbounded” name="1item” type="warehouse_item” /
>
</choice>
</complexType>
<! >
</schema>

Formally the type automaton of XML Schema definitions thus can be specified
as the following triple: [7]

Definition 6:
A XML Schema type automaton is a triple D = (T, p, T) consisting of a finite set of
types T'; a mapping p from T to reqular expressions r as given by the syntaz

r o= Nalr,r|r +rlr*rt|r?

where \ denotes the empty string and a ranges over element names; and a mapping
T that assigns a type to each pair (t,a) with the element name a occurring in p(t).

XML Schema notation
For a shorter notation of XML Schema definitions typeset element names will be

typesetted in monospace and element types will be typesetted in talic in this work.
The earlier XML Schema can be written more compact then, like:

25

Chapter 2. Schema learning algorithms

store — <sale>[sale], <warehouse>[warehouse

sale — <item>[sale_item]™

[
[
warehouse — <item>|warehouse_item|*
sale_item — <name>[\], <price>[)]
[

]
warehouse_item — <name>[\], <count>[)]

Another notation, used in this work, is the tree notation, which shows the full type
automaton and the type dependencies:

(store)
Lsale, warehousej

[warehouse |
litem_warehouse™)

(item_warehouse]

name, price |_name, count |

When learning XML Schema instead of just Document Type Definition this means,
that one needs to learn types for each path, instead of for each element name. Some of
those types may be merged and reused to reduce the complexity of the schema. The
paper “Inferring XML Schema Definitions from XML Data” [7] presents an algorithm
for doing that, which will be described now and extended later in this work.

The path used for this does not necessarily span to the root of the document, but
may be limited to some level of ancestors. A schema where each type only depends at
maximum on ancestors k level above the current element is called k-local. Document
Type Definitions therefore are always only 1-local schemas.

2.4.2. Inference of local XML Schema definitions

For the purpose of this algorithm “Inferring XML Schema Definitions from XML
Data” [7] considers an XML fragment a (possibly empty) sequence < a; > f;< /a; >
. < ap >fn< /a, > of elements where ay, .., a, are element names, and fi, .., f,, are
themselves XML fragments. Attributes are ignored in this paper, as well as data
values. The inference of atomic data values has already been studied in “Efficient
Schema Extraction from Multiple and Large XML Documents”. [21]

Furthermore paths(f) is written for the set of all labeled paths starting at a root
element in f, if f is an XML fragment. Additionally strings(f, p) is defined as the set
of all strings of element names occurring below an occurrence of path p in f.

26

2.4. XML Schema definitions

Based on Definition 4.1 the paper provides a XML Schema validation algorithm
which then leads to the inferencing algorithm and definitions, which will be further
reused in this work.

The semantics of a XML Schema are given by the following algorithm to validate
a XML fragment f = < a; >f1< /a; >..< a, >f,< /a, > against a type t in a XML
Schema D = (T, p, 7). [27, 29] First the string of element names a;..a, is matched
against the regular expression p(t). If the check fails, the fragment is rejected, other-
wise each f; is validated against the type 7(¢,a;) of a; in ¢t and accept the fragment if
all validations (recursively) succeed. This validation algorithm also implies, that the
content model of an element is completely determined by the labeled path from the
root to the element, as mentioned earlier.

For f = <a; >fi1< /a; >..< a, >f,< /a, > to be of type t, each f; must be valid
with respect to 7(¢,a;). This is true only if f; = < by >¢1< /by >..< by >¢;n< /by >
and every g; is valid with respect to 7(7(t,a;),b;). This reasoning can be continued
until the desired element is reached, where its child fragment A must be of type
7(..7(7(t,a;), b;j).., c) with aibj..c as the labeled path from the root to the element.

This leads to the following alternative view on validation, which forms the corner-
stone of the papers inference algorithms. Let, for a path p = ab..c, 7(s, p) — t denote
that 7(..7(7(s,a),b).., c) is defined and equals t. Let L(r) denote the set of all strings
matched by regular expression r.

Proposition 2:
([7]) An XML fragment f has type s in an XML Schema (T, p, T) iff for every path
p € paths(f) there exists t such that 7(s,p) — t and strings(f,p) C L(p(t)).

As already mentioned the locality of a content model in a XML Schema basically
defines the length of the minimum path, which is required to differentiate a type from
another with the same element name. It is defined formally in [7]:

The formal definition of such k-local XML Schema definitions is as follows. Let p|
stand for the path formed by the k last element names of a path p (if length(p) < k
then we take p|, = p). Two paths p and g are k-equivalent if p|; = ¢|. In particular,
when length(p) < k, p is only k-equivalent to itself.

Definition 7:
A pair (D, s) with D an XML Schema and s a type in D is called k-local if for all
k-equivalent p and q such that 7(s,p) — t and 7(s,q) — t we have t =t.

For learning the content models for the types in the XML Schema the algorithms
from “Inference of Concise DTDs from XML Data” [6] are reused. Thus the algo-
rithm learns XML Schema definitions with only Single Occurrence Regular Expres-
sions (SORE), and in the paper the learned schemas are called SOXSD (Single Oc-

27

Chapter 2. Schema learning algorithms

currence Xml Schema Definitions) accordingly. This also ensures the learned regular
expressions are deterministic, as required by the specification. [36]

The SORE are learned from Single Occurrence Automatons (SOA) as, described
earlier in chapter 2. The SOA contains of states, which, “except for the initial and
final state, are element names.” [7]

Those SOAs are learned for paths which are limited to a length k& for k-local
SOXSD.

For the XML example in subsection 2.4.1 the resulting 2-local XML Schema would
look like:

(A, <store>
(<store>, <sale>

— <sale>, <warehouse>
— <item>

(<store>, <warehouse>) — <item>
(<sale>, <item>) — <name>, <price>
(<warehouse>, <item>) — <name>, <count>
— A

— A

— A

(<item>, <name>
(<item>, <price>
(<item>, <count>

— — — ' ' — v —

The result might differ from the expectation, since for three different elements an
equivalent type is learned, but they do not reference the same type. With incomplete
input sets of XML data this problem gets even worse. Consider the following example:

<?’xml version="1.0" 7>
<store>
<sale>
<category>
<item />
<item />
</category>
</sale>
<warehouse>
<category>
<item />
</category>
</warehouse>
</store>

Note that in this example the <item> elements are the same. Despite that the
following 2-local SOXSD would be learned:

28

2.4. XML Schema definitions

(A, <store>
(<store> <sale>

— <sale>, <warehouse>
— <category>

(<store>, <warehouse>) — <category>
(<store>, <category>) — <item>"

(<warehouse>, <category>) — <item>

~— N N~

(<category>, <item>) — A

It is obvious that the difference between the two <category> content models occurs
due to the sparse input. The resulting SOREs are not equal, even, with a more
complete XML corpus, they probably are meant to be equivalent.

2.4.3. Minimization

To tackle the problem of too many types the authors present the algorithm AMIN-
IMIZE, which locates equivalent types and merges the type definitions. Types are
considered equivalent if the XML fragments produces by this type are equal — which
is, for example, the case for the empty elements in 2.4.2. The full algorithm for learn-
ing k-local SOXSD including the MINIMIZE step is called iLOCAL and works on an
XML corpus C, where r is the root type of the schema:

XSD(D, r) = iLOCAL(C, k)

This does not apply to 2.4.2, though, since the XML fragments for the two <category>
elements are different. The paper introduce the REDUCE algorithm for that, which
merges similar type depending on a provided similarity threshold e.

The REDUCE algorithm

The goal of REDUCE is to not only merge equal, but also similar types. The similarity
of two types is measured based on the inferenced SOAs, which are learned for two
types. If the types are similar enough to be considered equal the XML Schema is
subsequently adapted. The adaption can be considered as a generalization of the
schema to compensate missing input data in the XML corpus.

To calculate the similarity of the SOAs the algorithm is adapted to include the
support for each edge in the SOA, denoted by suppa(a,b) for the edge from a to
b in the automaton A. The adapted SOAs obviously need to be stored during the
algorithm, so that they are available for the comparison. The SOA for a type s is
denoted by:

soa(s) := ISOA(k-strings(C, p|x))

29

Chapter 2. Schema learning algorithms

Where C is the XML corpus and iSOA is the modified algorithm for learning the
SOAs. k-strings(C, p|x) are defined as the set of all strings in C that occur below paths
that are k-equivalent to p:

k-strings(C, p|i) 1= _Jstrings(f, q)|f € C,q € paths(f), ple = gl

Based on these extra data structure the similarity of two types s and t in an inferred
XML Schema (D, r) = iLOCAL(C, k) can be calculated. Let dist(A, B) then be the
normalized edit distance between the support-annotated SOAs A = (V, E) and
B = (W, F) of those types:

Z a,b)eE—F SLlppA(CL b) Z(@b cF—E SuppA(a b)
Z ab)elE SLlppA(CL b) Z a,b)eF S ‘lppA(a b)

dist(A, B) intuitively calculates the dissimilarity of A and B by counting the number
of edges, which are available in A, but not in B, weighted by the support these edges
have and normalized by the overall support of all edges in A, and the same for the
edges in the opposite direction. If both SOAs are the same the dissimilarity will be
0, obviously.

The similarity of two types s and ¢, or edit distance, is then given by:

dist(A, B) :=

distp(s,t) := max(y p)ereachp (s, dist(soa(s’), soa(t"))

This describes the maximum edit distance between any two types, which can be
reached by the same path in the current type subtree.

Based on the distp the algorithm merges types, which dissimilarity is below some
specified threshold value. Merging the types involves the adjunction of the SOAs for
the types. The algorithm, as presented in [7], is shown in Algorithm 2.

(s',t') € reachp(s,t) is defined as all elements which can be reached from the types
s and t using the same path p such that 7(s,p) — s’ and tau(t,p) — t'.

With higher threshold values there is a risk of false merges, e.g. with a thresh-
old value of 2 all types would be merged, no matter how different they are. The
paper evaluates different values for the threshold ¢ against a hand-crafted example
XML Corpus and checks for false positives and false negatives. Their results listed in
Table 2.1.

With the used input it shows that starting by a threshold of 0.2 the number of false
negatives increases, which means that types which are not meant to be merged are
merged by the algorithm. In this work this approach, and similar approaches, will be
evaluated against more examples.

30

2.4. XML Schema definitions

Algorithm 2 REDUCFE

let (T, p,7) =D
initialize M := {(s,t) € T?|0 < distp(s,t) < €}
while M is non-empty do
for all (s,t) € M do
for all (s',t') € reachp(s,t) do
set soa(s") := soa(s’) W soa(t’)
set soa(t') := soa(s')
for all a € elemsp(t') — elemsp(s’) do
add (¢',a) = 7(t',;a) to T
end for
for all a € elemsp(s’) — elemsp(t’') do
add (t';a) = 7(¢,a) to T
end for
end for
end for
recompute M := {(s,t) € T?|0 < distp(s,t) < €}
end while
for all type t € T' do
replace each t — p(t) in p by t — TOSORE(soa(t))
end for

e false pos. false neg.

0.01 2 0
0.05 0 0
0.10 0 0
0.15 0 0
0.20 0 3
0.50 0 3

Table 2.1.: REDUCE evaluation results

31

Part II.

Development

33

Overview

In this part the existing analysis and algorithms, described in the last part, are ex-
tended. This parts follows the common structure by performing additional analysis
on larger and more current sets of XML data. Based on the data gathered in the anal-
ysis the existing algorithms are adapted and extended. Afterwards a methodology for
evaluation of the resulting schemas will be presented and the developed algorithms
will be compared on this basis.

35

Chapter 3.
Schema analysis

Besides the existing analysis of schemas own additional statistics were required to ver-
ify which improvements to the algorithms would prove most valuable. This approach
already proved itself important during earlier works on inferencing Document Type
Definitions and XML Schema definitions. With the use of statistics it was possible to
find about valid simplifications for child patterns, for example. [6]

For some of the required statistics extra steps had to be performed to calculate
accurate statistics. The analysis of XML Schema definitions included the following
steps:

1. Finding XML Schema definitions
2. Schema downloading

3. Schema normalization

4. Schema ranking

5. Calculation of statistics

Those steps will be described in further detail in this chapter.

3.1. Finding XML Schema definitions

The goal is to analyse schemas, which are currently used to describe XML data for
real life applications. There are different ways to get those schemas. The number of
schemas used to generate the statistics often were relatively small in earlier studies
6, 5, 24].

For this study different search engines and known schema repositories were used
to locate as many schemas as possible. The only popular search engine, which still
indexed XML Schema definitions was Google, while Bing and Yahoo! did not offer
any results when restricting the file type to XML Schema definitions.

To find as many XML Schema definitions as possible, the search queries were
parametrized. Google offers multiple ways to restrict a search, like:

37

Chapter 3. Schema analysis

e Country codes to limit the originating area
e Count and offset of search results

e File type of found documents

All these parameters were used to widen the set of potential results. The resulting
URLs of potential XML Schema definitions often led to false positives.

The Stylus XML Schema Library also provided an index of well-known XML Schema
definitions, which were also downloaded.

Altogether the searches resulted in 2733 unique URLs.

3.2. Schema downloading

The unique URLs, which were located in the schema fetching step only point to
potential XML Schema definitions. To receive a set of unique XML Schema definitions
the schema downloader had to complete additional tasks:

e Detect if the downloaded item really is a XML Schema
e Fix small fixable errors

e Remove duplicate schemas

Those tasks are implemented in the schema downloader and are now described in
more detail.

Since several of the URLs pointed to textual descriptions of a schema, rather then
to the schema itself, a method had to be implemented, to detect if the downloaded file
really is a XML Schema. Since there exist many partially invalid schemas, which still
could be processed like a real schema, it has been decided to not be too strict about
that. Those partially invalid schemas most likely were written by humans, which then
provides important insight into the properties of common XML Schema definitions.

2% of the schemas contained XML errors, which were mostly simple syntax errors,
which libxml2 were able to fix on loading. libxml2 was the library used to process
and analyse the XML Schema definitions and is generally one of the most used XML
libraries.

Since several XML Schema and XML authors do not handle namespaces correctly
the checking for the namepsace of the document was not feasible. The check, which
was performed to verify if a document is a XML Schema was to ensure that the root
element has the local name <schema>. About 23% of the URLs found earlier pointed
to documents not containing a <schema> element as the root node.

The targetNamespace attribute of a XML Schema contains the namespace a XML
Schema defines. The contained name can therefor be used as an unique identifier

38

3.3. Schema normalization

Anonymous XML Schema definitions 318
Namespaced XML Schema definitions 1139
Sum 1511

Table 3.1.: Found XML Schema definitions

of the schema. Later versions of the same schema would contain a different version
string in the target namespace. With this namespace it is possible to remove most
XML Schema duplicates, which were found under multiple URLs.

On the other hand there are a lot of XML Schema definitions, which do not define a
target namespace. For those schemas the XML markup was normalized and hashed to
generate a custom unique identifier for those schemas. This allowed us to remove all
obvious duplicates (about 22%) and left the number of schemas, shown in Table 3.1.

3.3. Schema normalization

One part of the analysis are statistics on the type automaton, which has been defined
in Definition 4.1. XML Schema itself offers syntactic sugar when specifying types,
which makes them hard to analyse. For this a normalization step is performed, which
transforms the XML Schema in a semantically equivalent XML Schema, which only
uses very basic syntax.

The syntactical elements which are eliminated during this process are:

e Simplify types
— Extract anonymous types

— Inline groups

Inline attribute groups

— Evaluate extensions

Evaluate restrictions

Normalize simple content

— Remove unused types

e General markup simplifications
— Removing comments and annotations

— Simplify simple types

These normalizations are now described in further detail.

39

© 0 N O oA W N =

10

Chapter 3. Schema analysis

3.3.1. Extract anonymous types

Types are normally identified by a string and referenced by that string from any
<element> in the schema, which should be validated against this type. But XML
Schema does not enforce that each type must be referenced by a name, you can also
specify a type inline.

<?xml version="1.0"7 7>
<schema xmlns="http://www.ws. org/2001/XMLSchema”>
<element name="root” name="root”>
<complexType name="root”>
<sequence>
<element name="child”>
<complexType>
<sequence>
<element name="gradchild” type="string”/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</schema>

In the example above the element named <root> has an explicit type definition and
is associated with the type also named <root>. In this type definition a sequence is
defined which only contains one child element, named <child>, which has an implicit
type definitions. There is no type name specified, but the complex type is defined
directly in the element. The child element again contains only one element named
<grandchild> which contains a simple type definition.

This normalization now takes implicitly defined types, like for the <child> element
above, and converts them into a new explicitly defined type with a unique name. The
new type is declared on a global level of the schema:
<?7xml version="1.0"7 7>
<schema xmlns="http://www.ws. org/2001/XMLSchema”>

<element name="7r00t” name="root”>

<complexType name="root”>

<sequence>
<element name="child” type="djf3924j5sdg”/>
</sequence>

</complexType>

<complexType name="djf3924jsdg”>

<sequence>
<element name="gradchild” type="string”/>
</sequence>

</complexType>
</schema>

This makes it easier to analyse type dependencies and analyse the expressions which
are defined by the types.

40

3.3. Schema normalization

3.3.2. Inlining groups

XML Schema defines groups, which are basically sub-expressions, which may be reused
in type definitions. These groups can define the same structures like any type defini-
tions can do. Each group may be reused by any number of type definitions. A very
similar construct exists for attribute lists, so called <attributeGroup>s.

To properly analyse the complexity of expressions, those groups need to inlined
recursively into the type expressions. This has to be done recursively, since one group
may reference another group.

During the group inlining step it showed that two schemas actually contained a di-
rect group self-reference, which is obviously invalid, since it would lead to an expression
of infinite size. Those direct self references are ignored. Beside self-references group-
inlining is implemented straight-forward, ignoring groups from external schemas.

3.3.3. Evaluating inheritance

In the context of the XML Schema typing mechanism it makes sense to be able to
further refine existing types. XML Schema implements those by with the <extension>
and <restriction> elements. Both allow to modify the child pattern of a type defined
elsewhere.

An <extension> allows to extend an existing type with additional allowed elements,
like the following example shows by extending the extended type from the base type
and adding an additional element:

<?xml version="1.07"7>
<schema xmlns="http://www.ws. org/2001/XMLSchema”>
<element name="root” type="extended”/>

<complexType name="base”>
<sequence>
<element name="child1” type="string” />
</sequence>
</complexType>

<complexType name="extended”>
<complexContent>
<extension base="base”>
<sequence>
<element name="child2” type="string”/>
</sequence>
</extension>
</complexContent>
</complexType>
</schema>

An <extension> only allows appending, like mentioned in [36]:

41

Chapter 3. Schema analysis

This specification allows only appending, and not other kinds of exten-
sions.

A <restriction> only modifies the simple type definitions of the referenced base
type. Since simple types are not analyzed here, the child pattern from the referenced
type may just be inlined ignoring the defined modifications.

3.3.4. Other simplifications

For easier manual introspection and faster processing of the schemas, information ir-
relevant to this analysis was removed from the schemas. All <annotation> elements,
which are comments in XML Schema, XML comments and unused types were re-
moved. Additionally the simple type definitions all are replaced by the same string

type.

3.4. Schema ranking

XML Schema supports <import> to include the definitions of another schema, so that
its types may be referenced, extended, or the groups may be used in type definitions.

Those import statements are not resolved during the schema normalization, to
make it possible to analyze the schemas with and without influence of the referenced
schemas. Some XML Schema definitions, like the XML XML Schema are used very
often, and would have a larger influence.

Beside the unweighted statistics two ranking methods were implemented to verify if
the value distribution differences significantly between the popular and the unpopular

XML Schema definitions.
e Schema support
e PageRank
The weighting is defined as a function over 3, the set of all analyzed XML Schema
definitions to a number in R. The value provided by the weighting function function

for a given XML Schema is multiplied with the results from the statistics. For the
unweighted results the following function is used:

wX)=1

3.4.1. Schema support

Schema support can formally be specified as the following function:

42

3.5. Calculation of statistics

Definition 8:
w(X) is a function mapping each XML Schema in 3 to a number n € N.

w(X) eN

Where 3. is the set of analysed schemas and n is the support of a XML Schema.
The support of a XML Schema 1is the number of references in other XML Schema
definitions to the XML Schema plus 1.

The addition of 1 to the basic support of each schema is used to leave a minimal
relevance to the unreferenced XML Schema definitions.

3.4.2. PageRank

The PageRank is an algorithm originally developed by Brin and Page in “The PageR-
ank Citation Ranking: Bringing Order to the Web” [31] to implement an objective
importance metric for web sites by emulating an idealized random surfer.

The PageRank algorithms can be mapped to evaluate importance of nodes in any
graph, like the CodeRank metric shown in “CodeRank: A New Family of Software
Metrics” [?]. The XML Schema definitions with its <import> statements can be
considered a directed graph:

Definition 9:

The SchemaGraph is a directed graph G = (3,1), where ¥ are the analyzed schemas
and I are the edges, denoted by the <tmport> statements in the analyzed schemas
pointing from the analyzed schema to the referenced schema.

On this graph the PageRank can be calculated as described in “The PageRank
Citation Ranking: Bringing Order to the Web” [31] - for this implementation a equally
distributed source ranking had been chosen. An excerpt of the schemas with the
highest rank, as determined by the PageRank algorithm, can be found in Table 3.2.

3.5. Calculation of statistics

With the normalized XML Schema definitions as a base and the three different schema

weighting functions the relevant statistics can be calculated. The statistics focus on

the differences between Document Type Definitions and XML Schema definitions,

which are the XML Schema typing mechanism and the differences in child pattern

regular expressions. The properties of simple type usage are ignored, because they

are irrelevant for this work, and analysis of those has already been researched. [21]
The following statistics were calculated:

43

Chapter 3. Schema analysis

Schema PageRank
http_-www_w3_org_2001_SMIL20_ 21.28
http_-www_w3_org XML_1998_namespace 18.99
http_www_w3_org_1999 xlink 7.24
http_www_it_ojp_gov_jxdm _appinfo_1 5.74
http_purl_org_dc_elements_1_1_ 3.62
http_www_w3_org_2000_09_xmldsig_ 3.31
urn_oasis_names_specification_ubl_schema_xsd_CoreComponent. . . 3.30
http_www_opengis_net_gml 2.95
http_java_sun_com_products_oss_xml_Common 2.79

Table 3.2.: PageRank of XML Schema definitions

e Child patterns
— <all> occurrences

— Counting pattern usage

e Typing mechanism
— Usage of types
— Ancestor depth

The statistics are discussed in further depth in the following sections.

3.5.1. Child patterns

Child pattern analysis is one of the three major differences between XML Schema
and Document Type Definition. The class of allowed regular expressions in Docu-
ment Type Definition and XML Schema is the same, but XML Schema allows several
syntactical constructs which are intended to make schema authoring easier. This
analysis is intended to analyze the usage of those constructs to evaluate if the algo-
rithms for learning the regular expressions should be adapted to learn XML Schema
definitions, which are closer to real world schemas.

<all> occurrences

<all> is new to XML Schema and allows to specify a set of elements, which may occur
in an expression with insignificant order. RelazNG introduced the ampersand (&) in
their compact syntax for this which is also used in this work for a shorter notation.
[14] An example for a conversion of a <all> concatenation of the elements <a>,
and <c> to the simplified syntax of Document Type Definitions therefore is:

44

N O s W N =

3.5. Calculation of statistics

a&b&ec = (abc + acb + bac + bca + cab + cba)
The equivalent XML Schema code would look like:

<! >
<all>
<element name="a¢” type="a” />
<element name="b" type="0" />
<element name="c¢” type="c¢” />
</ all>
<! >

The occurrences of <all> were analyzed per schema and per type.

No weighting Support PageRank
Per type 2154 / 62439 (3.45%) 3.45% 0.52%
Per schema 90 / 1511 (5.96%) 6.02% 0.90%

Table 3.3.: Occurrence of <all>

The numbers in Table 3.3 show that <all> is used in a significant number of
XML Schema definitions, even the number is significantly lower for the most pop-
ular schemas. The results weighted by the PageRank clearly show that <all> is
mainly used in XML Schema definitions, which are not reused by other XML Schema
definitions.

Counting pattern usage

XML Schema supports simple counting patterns applied to <sequence>, <choice>,
<all> and <element> nodes. Counting patterns specify how often a subexpression
may occur. For each element it allows to specify the minimum and maximum num-
ber of occurrences. An example for a conversion of a counting pattern applied to a
<element> to the simplified syntax used in Document Type Definitions could look
like:

a{2,5} = aaa?a’a?
The equivalent XML Schema code would look like:

<! >

<element name="a¢” type="a” minOccurs="2” maxOccurs="5" />
<! >

Counting patterns were analyzed per subexpression for the elements mentioned
before, per type and per schema. There is a certain set of counting patterns, which
can be expressed using the common counting modifiers 7, * or 4+ in Document Type
Definition, too. The values which can be mapped to those counting modifiers are

45

Chapter 3. Schema analysis

considered standard. Setting the minimum and maximum occurrences is of course
optional. If nothing was set by the schema author the subexpression was counted as
default. Non standard are all those counting patterns, which contain values other
then 0, 1 and unbounded:

Default

No counting patterns were provided by the schema author.

Standard

Only counting patterns were provided, which could be mapped to 7, * or +.

Non-Standard
All other counting patterns

First, the aggregated usage of counting patterns per schema, while a schema is
considered “default”; if only default values are used, and is considered “standard”
if only default and standard patterns are used. If there is only one non-standard
pattern, it is considered “non-standard”.

No weighting Support PageRank
minQOccurs
Default 102 / 1511 (6.75%) 6.10% 5.71%
Standard 1337 / 1511 (88.48%) 90.22% 90.68%
Non-Standard 72 / 1511 (4.77%) 3.68% 3.62%
maxQOccurs
Default 99 / 1511 (6.55%) 5.94% 5.57%
Standard 1267 / 1511 (83.85%) 87.23% 87.60%
Non-Standard 145 / 1511 (9.60%) 6.84% 6.82%
Aggregated
Default 59 / 1511 (3.90%) 3.97% 3.67%
Standard 1278 / 1511 (84.58%) 87.76% 88.14%
Non-Standard 174 / 1511 (11.52%) 8.27% 8.19%

Table 3.4.: Counting patterns per schema

As shown in Table 3.4 there is no significant difference between the unweighted and
the weighted results — counting patterns seem equally distributed across schemas.

That only about 10% of the XML Schema definitions (unweighted: 11.52%, pager-
ank: 8.19%) ever use non-standard counting patterns of any type anywhere in their
schemas is a quite low number, which is even more obvious when looking at the
per-type usage of counting patterns.

Table 3.5 shows that .41% of the types are using non-standard minimum occurrence
patterns and only .86% of types using non-standard maximum occurrence patterns.
That leaves 98.89% of all type definitions with default or standard counting patterns.

46

3.5. Calculation of statistics

No weighting Support PageRank

minQOccurs

Default 15587 / 62439 (24.96%) 24.97% 25.10%
Standard 46596 / 62439 (74.63%) 74.59% 74.44%
Non-Standard 256 / 62439 (0.41%) 0.45% 0.45%
maxQOccurs

Default 17722 / 62439 (28.38%) 28.38% 28.51%
Standard 44179 / 62439 (70.76%) 70.74% 70.60%
Non-Standard 538 / 62439 (0.86%) 0.88% 0.89%
Aggregated

Default 10357 / 62439 (16.59%) 16.98% 16.91%
Standard 51389 / 62439 (82.30%) 81.90% 81.96%
Non-Standard 693 / 62439 (1.11%) 1.12% 1.14%

Table 3.5.: Counting patterns per type

Additionally one may take a look at the distribution of counting patterns to see, if
there are some very common multipliers.

0.100%]
o
0.075%]
0.050%|
0.025%[o ©
[]
[)
[

o, e ¢ [J
0.000% Rt P

10~0 10~1 102 10°3 T 1074 10~5

Figure 3.1.: Max occurrence distribution

Like shown in Figure 3.1 the max occurrence counts are distributed in a quite broad
range. The only significant peak is around 2, which is used in .08% if <element>
definitions, 19 (of 11669) <choice> and 39 (of 34829) <sequence> definitions.

The high numbers (> 10%) for maxOccurs are most probably used by schema au-
thors, which did not know about unbounded.

The distribution of values used for minimum occurrences shown in Figure 3.2 also

47

Chapter 3. Schema analysis

show a significant peak for 2. Still the general usage of minOccurs is very low and
shows a broad distribution of values.

0.075%[e
0.050%|
0.025%]
[]
o o
0.000% ces |a e
0 10 20 30

Figure 3.2.: Min occurrence distribution

Conclusion

The usage of counting patterns is insignificant, with a broad distribution of used
values. The statistical analysis shows that it is most probably not relevant to learn
counting patterns from input data. Especially learning maximum occurrence counts
for patterns would most probably require negative examples.

On the other hand <all> is used in a significant amount of schemas, even not used
in the most popular ones. It seems sensible to extend the regular expression learning
algorithms to be able to also learn <all> regular expressions.

3.5.2. Typing mechanism

The main difference between XML Schema and Document Type Definition is the
typing mechanism, as already discussed in section 2.3.

This is different from the XML Schema as defined in 4.1, where the regular expres-
sions are regular expressions of (label, type) tuples. This implies, that the content
model of an element is completely determined by the labeled path from the root to
that element. [7] This path is called ancestor path.

Ancestor depth

A per schema analysis of the ancestor depth of types shows how many of the XML
Schema definitions are using the XML Schema typing mechanism. The ancestor

48

3.5. Calculation of statistics

depth is defined as:

Definition 10:
The ancestor depth of an element is the minimum path length required to determine
the type of an element, sufficient to differentiate the element from elements with the

same label but a different type.

An ancestor depth > 1 means, that at least one element requires the parent element
to determine its type, and therefore the schema is not a Document Type Definition

anymore.

Ancestor depth ~ No weighting Support PageRank

1 1233 (81.60%) 88.25% 87.67%
2 171 (11.32%) 7.33% 7.62%
3 60 (3.97%) 2.46% 2.63%
4 32 (212%) 1.35% 1.42%
5 13 (0.86%) 0.53% 0.57%
6 2 (0.13%) 0.08% 0.09%

Table 3.6.: Ancestor depth per schema

Table 3.6 shows that 82% of the analysed schemas are not using the XML Schema
typing mechanism. Weighted by the PageRank the number of schemas not using the
XML Schema typing mechanism increases significantly to nearly 88%. This implies,
that the most popular XML Schema definitions most probably can be written as
Document Type Definitions.

XML Schema types are still broadly used in other schemas, with a maximum an-
cestor depth of 6, found in 2 schemas. Compared with the ancestor depth per type
usage statistics in Table 3.7 one can see that only few types per schema are using a
high ancestor depth.

Ancestor depth No weighting Support PageRank
1 74686 (97.81%) 97.79% 99.66%

2 1106 (1.45%) 1.47% 0.22%
3 355 (0.46%) 0.47% 0.07%
4 125 (0.16%) 0.16% 0.03%
5 84 (0.11%) 0.11% 0.02%
6 2 (0.00%) 0.00% 0.00%

Table 3.7.: Ancestor depth per type

49

Chapter 3. Schema analysis

Usage of types

In Document Type Definition the type of an element is only determined by its label.
In XML Schema it is determined by its label and the ancestor path. If the same
label occurs multiple times in a schema and is associated with different types, the
schema cannot be expressed as a Document Type Definition anymore. Those types
are furthermore call XSD-types.

Since types are identified by a type in XML Schema it is possible that the same
type is used with multiple elements with different labels. This analysis researches how
these two features are used in real world XML Schema definitions.

Types per label No weighting Support PageRank

1 95.72% 98.43% 97.40%
2 2.30% 0.85% 1.40%
3 0.35% 0.13% 0.21%
4 0.68% 0.25% 0.41%
5 0.10% 0.03% 0.06%
6 0.06% 0.02% 0.03%
7 0.02% 0.01% 0.01%
8 0.41% 0.15% 0.25%
9 0.05% 0.02% 0.03%
10 0.01% 0.01% 0.01%
1008 0.00% 0.00% 0.00%

Table 3.8.: Usage of multiple types for the same label

With the schema normalization described in section 3.3 it is quite simple to analyze
the type label ratios. Since each type is extracted into a named <complexType>
definition in the global schema element, the “types per label” analysis in Table 3.8
results in fetching all <element> nodes, grouping them by the label, which is defined
by the name attribute, and checking how many different types are referenced.

The “labels per type” statistics in Table 3.9 worked analogous. For both analysis
only schema-local <complexType> definitions were taken into account. Statistics based
on all types do not differ significantly — even if also simple types are taken into account.
For types, which are not declared locally in the schema, it cannot be decided, though,
if it is a simple or complex type. Therefore only local complex type definitions were
used for this statistic.

Table 3.8 shows the usage of the main XML Schema feature, how often are different
types used for the label. If this number is greater then 1, the type definitions cannot
be expressed as a Document Type Definition. 95.7% of the labels only have one type
definition assigned and this feature is is used less in the popular schemas.

50

3.5. Calculation of statistics

Also interesting, and not mentioned in other papers [7], is the XML Schema feature
shown in Table 3.9. Not only the same label may be used with different types, but
also the same type may be reused with multiple elements with different labels. Like
the statistics show, this is used in a similar amount of types, while it is used more in
the popular schemas.

The schema definition of “US GAAP Taxonomies, Release 20097, for example, uses
the same string complex type definition for 6091 different labels.

Labels per type No weighting Support PageRank

1 95.52% 90.53% 93.63%
2 2.05% 3.95% 2.75%
3 0.82% 1.39% 1.01%
4 0.50% 1.07% 0.72%
5 0.24% 0.70% 0.41%
6 0.18% 0.51% 0.31%
7 0.12% 0.19% 0.16%
8 0.07% 0.20% 0.12%
9 0.07% 0.12% 0.09%
10 0.06% 0.19% 0.11%
6091 0.00% 0.00% 0.00%

Table 3.9.: Usage of multiple labels for the same type

3.5.3. Comparison

The data set fetched two years earlier for [12] was still available during this research.
It contained over 8000 XML Schema definitions. Significant differences between the
numbers presented here and performing the same analysis on those schemas could not
be found.

There are other papers performing similar analysis on other sets of XML Schema
definitions. Since the schema simplifications described above are not performed in
those works the numbers might not be comparable.

In [5], dating back to 2004, 5 out 30 (16.7%) XML Schema definitions used XSD-
types, as opposed to 18.4% in this study. Given the low number of schemas used in
that study no tendency can be extrapolated from that.

The XML Schema feature <all> has been researched in [24] with data sets of
XML Schema definitions dating back to 2005 and 2008, containing 199 and 233 valid
XML Schema files, respectively. For the 2005 data set <all> occurred in 10.55% of
all schemas and for the 2008 data set it occurred in 19.82% of all schemas. Those
numbers differ quite a bit from the 6% found in this analysis and support the incentive

51

Chapter 3. Schema analysis

to integrate support for <all> in the schema inferencing algorithms. It can only
be assumed that the XML Schema definitions analysed in those studies belong to
an adverse subset of the schemas fetched in this work and in [12] which were both
analyzed in this work.

3.6. Conclusion

The usage of XML Schema types in XML Schema definitions is significant. About 7%
of the schemas are even using an ancestor depth of > 2. This leads to the conclusion,
that the algorithms for schema learning should be extended to also inference different
types for the same label.

The usage of the same type for multiple different labels is as popular as using
different types for the same label. Therefore the algorithms should also learn schema
definitions in which the same type is used for different labels. This may also lead to
more compact schema definitions.

The usage of <all> in XML Schema definitions is also significant, as opposed
to counting patterns. Therefore the algorithms should also be extended to support
inferencing <all>.

52

© 0 N O oA W

Chapter 4.

Schema learning

The schema analysis in chapter II showed that some improvements to the existing
algorithms for learning of XML Schema definitions, which were described in sub-
section 1.2.2, are meaningful. It has been found out, that he typing mechanism of
XML Schema is used in practice, so that improvements to the type merging algorithms
should be researched and evaluated. Additionally extensions to the regular expression
syntax are also used in XML Schema definitions, so that the corresponding algorithms
should also be adapted for that.

4.1. XML Schema definition

First the XML Schema formalization presented in 4.1, as provided by [7] is extended.
This formalization of XML Schema defines XML Schema definitions as a triple D =
(T, p, 1), consisting of a finite set of types T'; a mapping p from T to regular expressions
r.

This does not specify a set of potential root elements, e.g. elements which may
occur as root nodes in the validated XML instances. The Document Type Definition
definition, presented in 2, on the other hand defines a single possible root node.
In Document Type Definitions one single root node has to be defined explicitly in
the schema, while in XML Schema definitions the set of root nodes is only defined
implicitly, thus often overlooked.

As stated in [12] all elements defined in <element> nodes, which are direct children
of the <schema> node are possible root elements in the XML instances, which are
validated against the XML Schema. This feature is used in practice, like the following
extracts from the Docbook [15] schema show:
<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.ws. org/2001/XMLSchema”

elementFormDefault="qualified 7>

<! >

<! >

<xs:element name="book” substitutionGroup="book. class”/>

<! >

<!

53

10
11
12

13

© 0 9 O o ose W N

e e =
BOW N+ O

Chapter 4. Schema learning

>
<xs:element name="article” substitutionGroup="article.class”/>
<! >
</xs:schema>

The XML Schema defines both, <book> and <article>, as valid root nodes while
<article> also is a valid child of the <book> element.

The following example shows a XML Schema which only consists of one valid root
element by defining all other elements locally in the type definitions:

<?xml version="1.0" 7>
<schema xmlns="http://www.ws. org/2001/XMLSchema”>
<element name="root” type="root” />
<complexType name="root”>
<sequence>
<element name="child” type="child” />
</sequence>
</complexType>
<complexType name="child”>
<sequence>
<element maxOccurs="unbounded” name="grandchild” type="string” />
</sequence>
</complexType>
</schema>

This XML Schema will only validate XML instances, which contain the <root>
element as a root node. The nodes <child> and <grandchild> are no valid root
nodes.

Therefore the following extension of the XML Schema type automaton definition is
proposed:

Definition 11:
A XML Schema type automaton is a 5-tuple D = (T, p, T, 0,7,) consisting of a finite
set of types T'; a mapping p from T to reqular expressions v as given by the syntax

r o= Nalr,rlr +rlr*rt|r?

where \ denotes the empty string and a ranges over element names; and a mapping
T that assigns a type to each pair (t,a) with the element name a occurring in p(t);
and the start expression o, which is defined as the regqular expression a; + .. + a,, and
a mapping T, that assigns a type in T to each a occurring in o.

The XML Schema validation algorithm is then extended to validate the root XML
fragment against the start expression o and then continues as described in sec-
tion 2.4.1. This will be referenced later in the extensions of the XML Schema defini-
tions learning algorithm again.

54

4.2. Regular expression learning enhancements

4.2. Regular expression learning enhancements

There are two major changes in the regular expression syntax available in XML
Schema compared to Document Type Definition. In XML Schema it is possible to
define counting patterns other then just ?, * and *, but the analysis in chapter II
showed that they are not used enough in practice to make the effort of modifying the
regular expression algorithms to learn counting patterns.

Another syntactic feature available in XML Schema, but not in Document Type
Definition, is the <all> syntax element. <all> allows to define a set of children
with irrelevant order but a defined number of occurrences of those children. To keep
the regular expression deterministic there are some limitations imposed by the XML
Schema specification [36]. The <all> element may only occur at the top level of
regular expressions and may not contain <sequence> or <choice> elements. We
denote <all> by &. The syntax for regular expressions available in XML Schema
therefore can be defined as:

s == Mall|r
r == Nal|r,r|r +r[r*|rt|r?
= m|m?|m*|m™*

m == ala&m

Each <all> expression can be translated into a common <choice> expression.
The counting pattern applied to the <all> expression affects each element, so that
(a&b&c)™t indicates that each of the elements a, b and ¢ must at least occur once in the
matched string, while their order is irrelevant. Therefore the following translations of
<all> patterns into common expression are valid:

(a&bdec) === (abc + acb + bac + bea + cab + cba)

(a&b&e)™ == (((a+b+c)a"(a+ b+)b (a+b+c)'cT(a+b+c))+
(a+b+c)a(a+b+c)ct(a+b+c)bt(a+b+c))+

(a+b+c)v (a+b+c)at(a+b+c)ct(a+b+c))+

(a+b+c)b (a+b+c)ct(a+b+c)at(a+b+c))+

(a+b+c)ct(a+b+c)at(a+b+c)bt(a+b+c))+

(a+b+c)ct(a+b+e)b (a+b+c)at(a+b+c)"))

(a&b&c)” === (a+ b+)"

Since order is not always relevant in XML instances this obviously makes it easier to
write XML Schema definitions which explicitly allow this. The translation of (a&b&c)*
shows that inferring <all> is only relevant for counting patterns enforcing at least

55

Chapter 4. Schema learning

one occurrence of every element in the expression. For the other cases a common
<choice> pattern can be used to achieve the same effect.

4.2.1. Extending REWRITE

The REWRITE algorithm, like described in chapter 2, does not maintain any counting
information for the elements found in the input strings and thus cannot be extended
meaningfully to inference <all>.

For a set of input strings like {abc, acb, bac, bca, cab, cba} the algorithm instead fails
to inference a regular expression. Since it is known that REWRITE is not always
able to return a regular expression for each set of input strings another algorithm, like
CRX, should be used as a fallback algorithm anyways. Thus only the CRX algorithm
has been extended to support <all> in this work.

4.2.2. Extending CRX

The CRX algorithm, as described in subsection 2.1.3, already maintains counting
information about the elements occurring in the input strings and the extension to
also learn <all> patterns is pretty straight forward. Now the algorithm eCRX is
presented, which is an extension to the original CRX algorithm, additionally inferring
<all> patterns.

Since <all> patterns may not occur inside other constructs, and no other constructs,
like a <sequence> or <choice>, may occur inside an <all> pattern the following sub-
set of regular expressions will be inferenced by this algorithm: The class of extended
Chain Regular Expressions (¢CHARE), which are CHARES, or patterns following
the form (a;&..&ay)? where a; is an element name, k£ > 1 and the 7 optionally one of
the available multipliers 7, %, or +.

Based on Hyy, as defined in the original algorithm in subsection 2.1.3, <all> can
obviously be inferenced if Hy, only has one node, meaning all elements are equal
regarding <y,. The algorithm is then modified as shown in Algorithm 3.

Example

To illustrate the algorithm the set of input strings W = {abc, bac, cab} is used. The
graph induced by —y then looks like:

The resulting calculated set of equivalency classes then looks trivial, like:

56

4.2. Regular expression learning enhancements

Algorithm 3 eCRX

Compute the set 'y of equivalence classes of ~y,
if |T'w|=1Av = [a1,..,a,)|n > 1 then
if every string in W contains exactly one occurrence of a symbol in {aq,..,a,}
then
() = (a1&..&ay,)
else if every string in W contains at most one occurrence of a symbol in {ay, .., a, }
then
r(v) = (am&..&ay,)?
else if every string in W contains at least one of ay,..,a, and there is a string
that contains at least two occurrences of symbols then
r(m) = (a1&..&ay,)t
else
r(v) = (a&..&ay,)*
end if
return 'y
end if
while A maximum set of singleton nodes 71, .., v,, where pred(y;) = .. = pred(y,)
and succ(y1) = .. = suce(y,) exists do
Replace 1, .., v, by v = U_;7; and redirect all incoming and outgoing edges from
7 to 7.
end while
Compute a topological sort 71, .., of the nodes
for all i € {1,..,k} (v; = [a1,..,a,]) do
if every string in W contains exactly one occurrence of a symbol in {aq,..,a,}
then
r(vi) = (a1 + .. + ay)
else if every string in W contains at most one occurrence of a symbol in {ay, .., a, }
then
r(vi) = (a1 + .. + a,)?
else if every string in W contains at least one of ay,..,a, and there is a string
that contains at least two occurrences of symbols then
r(vi) = (a1 + .. +an)"
else
r(vi) = (a1 + .. +an)"
end if
end for
return 'y

57

Chapter 4. Schema learning

Since every element occurs exactly once in each of the input strings, the algorithm
inferences the following regular expression:

a&b&c

4.3. Type merging

The typing mechanism in XML Schema is used for two different use cases. The first
use case, described and handled in [7], is to use different types for elements with the
same name. This is a major difference compared with Document Type Definition.
The typing mechanism can also be used in a second way, to use the same type for
elements with different names.

Re-using the same type for elements with different names is even more common in
real-world XML Schema definitions then using different types for elements with the
same name, like the analysis in Table 3.5.2 showed. One use case for this, for example,
are markup languages like Docbook and XHTML, which allow different inline markup
to be stacked recursively. In case of XHTML the inline markup like ,
and <a> may again contain any inline markup, and thus all those elements have the
same generic inline markup type assigned.

The algorithm presented in “Inferring XML Schema Definitions from XML Data” [7]
only merges type definitions for elements with the same label. In this work a different
algorithm will be presented which also merges types of elements with different labels.

During practical evaluation of the learning algorithm it showed that attributes of
the elements also provide important information for type merging. The algorithm will
include information about attributes and tries to enhance the type merging results
based on that. As mentioned in [7] in practice it is not sufficient to check for equality of
the type automatons in elements or for the same of attributes, thus different methods
of comparing the type automatons and attribute lists will be presented, evaluated and
compared.

4.3.1. The algorithm

The algorithm presented in [7] and described in subsection 2.4.3 uses reachp(s,t) for
two types s and ¢ in the schema D and compares the resulting set of types (s, t').
Since reachp operates on the labeled path p from the types s and ¢ to reach the types
s’ and t' and checks them for equality or similarity only types for elements with the
same label are merged.

58

1
2

4.3. Type merging

The algorithm itself used in this paper is simpler by moving the responsibility for
maintaining the type tree consistence to the comparators. The algorithm Merge is
shown in Algorithm 4. It compares all types with each other using the function
similar() which implements different comparison methods described later. If to types
are similar enough they are merged. The merging itself (expressed by W) again is
slightly different from the algorithm described in [7], since it also needs to merge
attribute definitions and simple type information.

One important constraint about similar() is, that it must not evaluate types as
similar where the same label is used with different types. This would result in lost
information about the type tree and the resulting schema might not validate the input
XML anymore.

Algorithm 4 Merge
let (T, p,7) =D
set changed = 1
while changed do
set changed = (0
for all (s,t) € T? do
if similar(s,?) then
set soa(s) := soa(s) W soa(t)
set soa(t) := soa(s)
for all a € elemsp(t) — elemsp(s) do
add (s,a) — 7(t,a) to T
end for
for all a € elemsp(s) — elemsp(t) do
add (t,a) — 7(s,a) to 7
end for
changed = 1
end if
end for
end while
for all type t € T' do
replace each t — p(t) in p by t — TOSORE(soa(t))
end for

Example

Without a concrete definition of similar() and ignoring attributes the execution of the
algorithm is shown as an example for the following XML document:

<?xml version="1.0" 7>
<store>

59

Chapter 4. Schema learning

<sale>
<category>
<item />
<item />
<item />
</category>
</sale>
<warehouse>
<category>
<item />
<item />
</category>
</warehouse>
</store>

Using the unmerged 2-local SOXSD, as described in section 2.4.1, the input schema
D for Merge would look like:

(A, <store>
(<store> <sale>

— <sale>sale, <warehouse>warehouse
— <category>category;

(<store>, <warehouse>) — <category>categorys
(<sale>,<category>) — (<item>item)™

(<warehouse>, <category>) — (<item>item)"

~— N N N~

(<category>, <item>) — A

If the two types warchouse and sale are compared in an early iteration of the
Merge algorithm they must be considered as dissimilar since the labels in the SOA
are associated with the different types category, and categorys.

Once the two types category, and categorys are compared they would be merged
by the algorithm, since they contain the same SOA and their labels point to the same
type item. The algorithm would then set the change flag to 1 and reevaluate the types
in D. Eventually it will compare warechouse and store again, which now point to the
same type category; and can be merged. This will result in the intended schema:

store — <sale>sale, <warehouse>sale
sale — <category>category,
category, — (<item>item)™
item — A

Importance of type checking

The importance of checking that the labels in the compared content models are asso-
ciated with the same type can be shown with the following 3-local SOXSD as example

60

4.3. Type merging

input:

(A, A, <store>) — <sale>sale, <warehouse>warehouse
(A, <store>, <sale>) — <category>category,

(A, <store>, <warehouse>) — <category>categorys

(<item>item;)™

)+

(<store>, <sale>, <category>
<item>items
(<sale>, <category>, <item>

<name>name, <count>count)

—
=
— (<name>name, <price>price)
(<warehouse>, <category>, <item>) — (
ﬁ

)

)

)

)

(<store>, <warehouse>, <category>)
)

)

(<category>, <item>, <name>)

) =

(<category>, <item>, <price>
(<category>, <item>, <count>) — A

Note that this example contains two different definitions for the <item> elements
aggregated in the <category> elements, which depend on their grandparents.

Assuming the algorithm now starts by comparing the two types sale and warehouse
the SOAs are the same, but the labels are associated with two different types. If
those now would be merged, both would, for example, point to category, and the
information about items and its <count> child would have been lost and the XML,
which lead to the 3-local SOXSD, could not be validated any more with the resulting
schema, since the <count> element would be rejected during the validation.

The only elements which can be merged in this example are the empty elements
<name>, <price> and <count>. The schema resulting from the Merge algorithm
therefore would look like:

store — <sale>sale, <warehouse>warehouse
sale — <category>category,
warehouse — <category>categorys

category; — (<item>item;)t

categorys — (<item>itemsy)™t
item; — (<name>name, <price>name)
items — (<name>name, <count>name)

name — \

4.3.2. Implementation of similar()

similar() is intended to compare attributes and the SOA defining a type. Attributes
in XML Schema are defined as unordered set [36] and there is no way that the child el-

61

© 0 9 O ose W N

[T < e
S © ® N o W A W N = O

Chapter 4. Schema learning

ements depend on attributes, as opposed to RelaxNG [12]. In RelaxNG the attributes
are part of the regular expression defining the content model, but this work focusses
on XML Schema. Therefore the types maintain a set of attributes, which occur in the
given type and maintain information about each attribute if it is optional or required.

Since attributes and the regular expression are independent two different compara-
tors, one for the regular expression and one for the attribute sets are used by similar().
Assuming that elements with the same label are more likely to share the same type
optionally different attribute or element comparators can be used for elements with
the same label. The different pattern and attribute comparators are explained in the
following two subsections.

4.3.3. Attribute comparison

During the evaluation of the algorithms against real world XML data and the manual
introspection of the resulting XML Schema definitions it has been noticed that a lot
of false positive merges occurred because of ignoring attributes in the input XML
documents. This was especially obvious when learning the schema for one specific
XHTML based website.

XHTML contains a header and a body section. The header defines metadata like the
document title and author, style information and references to scripts. Most of those
elements do not contain any children but very different sets of attributes. Additionally
there are also various other elements not containing children, but different attributes
in the XHTML body, like elements. Ignoring the attributes this lead to very
unspecific results like the following type, which is then used by all elements without
any children:

<?xml version="1.0" 7>
<schema xmlns="http://www.ws. org/2001/XMLSchema”>
<! >
<complexType name="html/head/meta”>

<attribute name="http—equiv” type="string”/>
<attribute name="content” type="string”/>
<attribute name="rel” type="string”/>
<attribute name="type” type="string”/>
<attribute name="href” type="string”/>
<attribute name="media” type="string” />
<attribute name="src¢” type="string”/>
<attribute name="class” type="string”/>
<attribute name="wvalue” type="string”/>
<attribute name="selected” type="string”/>
<attribute name="name” type="string” />
<attribute name="width” type="string”/>
<attribute name="height” type="string”/>
<attribute name="alt” type="string”/>
<attribute name="title” type="string”/>
<attribute name="colspan” type="string”/>

62

4.3. Type merging

<attribute name="disabled” type="string”/>
<attribute name="checked” type="string”/>
<attribute name="onclick” type="string”/>

</complexType>
<! >
</schema>

To be able to evaluate the algorithms against real world XML data the attributes
had to be taken into account while merging the types. To compare the equality of
attribute definitions various comparators where defined and evaluated later.

Since the default state for attributes is optional, the example above shows all at-
tributes as optional, while, for example, the element requires the src and alt
attributes and all input documents specify those. This is the logical result of false
positive merges.

Comparator: Strict

The Strict attribute set comparator is the most strict one. It evaluates two sets of
attributes as similar if both sets contain the same attributes and the same subsets of
attributes are flagged as optional. For two types s and ¢, if a(s) denotes the set of all
attribute names associated with this type and oa(s) the set of optional attributes the
Strict comparator is evaluated as:

Comparator: Same

The Same attribute set comparator is less strict then the Strict comparator and
ignores the optional flag in the attribute sets. It just checks that both types contain
the same set of attributes and therefore evaluated as:

Comparator: Equal

The Equal attribute set comparator is less strict then the Same comparator. It checks
that at least all required attributes are available in both attribute sets:

a(s) —ao(s) C a(t) Aa(t) — ao(t) C a(s)

Comparator: Merge

The Merge attribute set comparator is the least strict comparator and just considers
all attribute sets as equal. It therefore mimics the behaviour of ignoring attributes
during the comparison of types.

63

Chapter 4. Schema learning

Merging attribute sets

If two types s and t are considered similar by similar() their attribute sets need to
be merged. Attributes occurring only in a(s) or a(t) are flagged as optional in the
resulting attribute set. Attributes flagged as optional in either s or t are also flagged
as optional in the resulting type s’. Only attributes flagged as required in both types
s and t are also flagged as required in s’. Therefore the following applies:

4.3.4. Element comparison

For the comparison of the regular expressions (element patterns) contained in the
content model definitions one algorithm has already been introduced in [7]. This work
introduces other comparators for the element patterns, which will later be compared
during the evaluation.

Comparator: Reduce

As introduced in [7] in the REDUCE algorithm and explained in subsection 2.4.3 this
algorithm calculates a distance between two patterns, as described by their SOAs. In
this work the direct distance between two automatons is used, and not the maximum
distance in the current type tree, since the Merge algorithm operates locally on each
type and maintains the integrity of the type tree by other means. Therefore the

following distance definition is used between the support-annotated SOAs A = (V| E)
and B = (W, F):

Z(a,b)eEfF suppy(a — b) n Z(a,b)eFfE supp(a —b)

dist(A, B) :=
() Z(a,b)eE supp4(a — b) Z(a,b)eF supp4(a — b)

Two element patterns are considered similar if the distance is below a defined
threshold. For valid threshold example values see subsection 2.4.3 or the source paper.

[7]

Comparator: Equal

This Equal element pattern comparator considers types similar, if the two automatons
of the compared types A = (V, E) and B = (W, F') are equal:

V=WANE=F

64

4.3. Type merging

Comparator: Subsumed

The Subsumed element pattern comparator considers types similar, if one of the au-
tomatons subsumes the other automaton:

(VCWAECF)V(WCVAFCE)

Comparator: Node-Based

The Node-Based element pattern comparator considers types similar, if the same
nodes are contained in both automatons, ignoring the vertices between those nodes:

V=W

Comparator: Node-Subsumed

The Node-Subsumed element pattern comparator considers types similar, if the nodes
in one of the automatons subsume the nodes in the other automaton:

VCWwWviwcCcVv

Merging element patterns

If two types s and ¢ are considered similar by similar() their element patterns need to
be merged. This is done by adding all nodes and vertices from one automaton to the
other. Merging the two SOAs soa(s) = A = (V, E) and soa(t) = B = (W, F) thus
will result in C' = (X, G):

X=Vuw
G=EFEUF

In case of a support-annotated SOA as required for the Reduce comparator the
support will be maintained as described in [7]:

suppce(a, b) == supp4(a, b) + suppg(a, b)

Where supp4(a, b) = 0 is assumed for simplicity, if there is no such edge in A, and
similarly for B.

65

Chapter 4. Schema learning

4.4. Evaluation

Evaluating the schema learning algorithms is crucial but very hard. There exist large
sets of XML instances, partially associated with schemas. But one cannot expect
to learn the exact same schema when learning from a set of XML documents, since
schema definitions are often less specific then they could be [6] or the input data is
to sparse to learn the real schema behind the data. Checking if one schema subsumes
another schema is still topic of current research and the author of this work is not
aware of any algorithm which can verify this.

Evaluation on real world data can only happen by manual introspection, which is
obviously tedious given the large amount of existing XML instances and schemas.

Therefore one has to look for other ways of automatic verification of the learning
algorithms and type comparators. In “Inferring XML Schema Definitions from XML
Data” [7] the authors use one XML instance and manually check the false positive
and false negative merges for different configurations of their algorithm. The XML
instance used in that paper demonstrates one aspect of type merging which was not
handled before by other work in this area.

For this work the algorithms were checked manually against different sets of XML
instances and the results were continually introspected manually. Based on that dif-
ferent XML instances were defined which show demonstrate certain aspects of schema
learning and prepared for automatic verification. In this section the source datasets,
the extracted examples and the verification methodology will be described.

4.4.1. Source datasets

As source datasets for manual verification of the algorithms and extraction of com-
mon structures for automatic verification sets of valid XML instances with known
structures were required. It is important to know the expected structure beforehand,
so that it is possible to verify the results and detect inconsistencies in the inferred
schema.

As a base for the extracted examples the following XML corpus were used:

Docbook
A set of Docbook [15] documents was used, generated by an application using a
well-known, documented subset of Docbook. Docbook is a popular XML-based
text-markup format using recursive structures and a lot elements share the same

type.

XHTML
XHTML (HTML) [37] is probably the most popular XML based language and
due to its really well known structure it is easy to manually detect false positive
and false negative merges in the resulting schema. For the manual introspection

66

4.4. Evaluation

the valid XHTML pages from one web application were used as input. This lead
to an application specific XHTML subset being learned, but also provided valid
input, like mentioned in subsection 4.3.2.

dblp

The dblp Computer Science Bibliography [25] provides a very large set of XML
documents, following a well known Document Type Definition. The data has
been used for schema learning before [6], which already showed that the schema
definition could be stricter then the available schema is. The schema does not
require the features of XML Schema and therefore provides a good way to verify
that the XML Schema inference algorithm still works fine with this kind of data.
Additionally the data set is quite large, so that it is safe to assume all intended
variants of the schema are already used.

Webfrap
Webfrap is an application build by SAP, intended to provide a framework for
Model Driven Development. For this the models are specified in quite com-
plex and domain specific XML documents, which do not yet have a schema
assigned. Together with the developers of Webfrap this enabled verification of
the algorithms against a large set of complex XML documents.

4.4.2. Extracted examples

From the mentioned manually analyzed XML corpus several examples were extracted
and prepared for automatic evaluation. The motivation behind those examples is
explained in this section. The XML source of the examples can be found in the
appendix in Part IV.

Store
This example is the XML source code used in “Inferring XML Schema Defi-
nitions from XML Data” [7] and used for evaluation of the algorithm in that

paper.

Empty Types
The Empty Types example shows the case of multiple different empty elements,
which can only be told apart by their attributes as found commonly in HTML
documents. This example models the case described in subsection 4.3.2.

Attributes
The Attributes example models the case of different attribute sets for the same
element in different subtrees of the document. This was a common case in all
test corpus, except for the dblp corpus. An example for this is an XHTML
 element, which contains a title attribute only in one subsection of the

67

BWw N =

o N9 O v

Chapter 4. Schema learning

site, or a Docbook <para> element, which only contains class attributes in
some sections.

Ancestor Depth
Since the analysis showed an ancestor depth greater then 2 is not uncommon
the Ancestor Depth example models a XML document, which requires at least
a 3-local schema for correct schema detection.

Reoccurrent
A very common case in all XML corpus, except for dblp, was the same element
occurring in different subtrees with slightly different sets of children. This es
especially true for languages like Docbook and XHTML, where large sets of
inline elements exist, which may be used in paragraphs. With incomplete corpus
this often leads to false type specialization.

4.4.3. Verification

To verify the results of the type merging process each element was annotated with the
expected type. This was done using an attribute in a custom namespace. After the
type merging one can now check automatically if elements with the same annotated
type were not merged successfully, or if two elements with different annotated types
were merged. The Empty Types example shows how these annotations look like:

<html xmlns:sl="http://example.com/SchemaLearning” sl:type="html”>
<head sl:type="head”>
<meta name="keywords” value="key, _word” sl:type="meta” />
<meta name="description” value="This_is_.a_description” sl:type="meta
»” />
<title sl:itype="title >Title</title>
<script type="text/ecmascript” src="scripts.js” slitype="script” />
</head>
</html>

The attributes in the custom namespace http: //example. com/SchemaLearning
are used solely for this evaluation. The type attribute specifies the type for each
element in the example.

To verify the accuracy of the result the RandIndex [33] metric was used. RandIndex
is a metric originally developed to check the accuracy of clustering algorithms and
returns a value between 0 and 1 describing the success of the clustering.

The assignment of elements to types can be considered as clustering the elements
in the source schema into an expected set of clusters (types). For a set of elements
S = {ey, .., ea} and two partitions of S to compare, X = {z1,..,2z,.} and Y = {yy, ..,y }
the following is defined:

68

http://example.com/SchemaLearning

4.4. Evaluation

a = |5*|, whereS™ = {(0;, 0j)|0i, 0; € X}, 0;,0; € Y}

b=|S"|, whereS™ = {(0;,0j)|0; € Xi,,0; € Xy,,0; € Y},,0; € Y}, }
c =|85"|, whereS* = {(0;,0;)]0i,0; € Xy, 0; € Y;,,0; € Y}, }

d = |S*|, whereS™ = {(0;,0;)|0; € Xi,,0; € Xy,,0i,05 € Y1}

Intuitively a and b are the items both clusters agree on, and ¢ and d are the items
the clusters disagree on. The index R is now defined as:

a+b
a+b+c+d

R results in values between 0 and 1, where 1 means that the clusters are entirely
the same, and 0 indicating that there are no similarities between the clusterings.

4.4.4. Experiment settings

The evaluation was run for all the mentioned examples, with different configurations
of the Merge algorithm.

First the input SOXSD are calculated with a different locality. For the evaluation
the following localities were evaluated:

e 1-local (like Document Type Definitions), 2-local, 3-local, 4-local

e Full path

This always uses the full path to the element, without limiting it to any specified
length, like defined for k-local SOXSD.

As described in section 4.3.1 the type comparison function similar() can be config-
ured in different ways. Beside setting an attribute and element pattern comparator
it is possible to define another attribute and pattern comparator for elements with
the same label. For the evaluation the comparators were naively ordered by their
permissiveness. Each comparator was used as it is for elements with the same label
and elements with different labels. Each comparator was also used with each more
permissive comparator for elements with the same label.

The Reduce comparator additionally allows custom thresholds values. It was used
with thresholds of 0.05, 0.1, 0.25 and 0.5, which also were used in the original paper
introducing the algorithm. [7]

A full matrix of the different comparators and their combinations used in the ex-
periment can be found in the full result in the appendix in Section 4.6.5.

69

Chapter 4. Schema learning

Locality Accuracy

1-local 0.9162
2-local 0.9280
3-local 0.9247
4-local 0.9155

Full Path 0.9155

Table 4.1.: Ancestor depth

4.4.5. Evaluation results

The full evaluation results can be found in 4.6.5. The result value distribution is small.
The best results (0.946) are accomplished using a 2-local SOXSD as input with the
Node-Based element pattern comparator for elements with different labels and the
Node-Subsumed element pattern comparator for elements with the same label with
different combinations of attribute set comparators.

Even with the low general variety of values there are several conclusions one can
draw from the results:

Ancestor depth

The results showed that using a high value for &k in the input k-local SOXSD quickly
leads to false negative merges, which reduces the quality of the resulting schema. In
table Table 4.1 the results show that the best results are accomplished with a 2-local
SOXSD even one of the five evaluation examples explicitly requires a 3-local SOXSD
to be learned correctly.

Label based merging

The examples contain examples of elements with different labels which are intended
to be merged and elements with the same label which are not intended to be merged.
Still from the results it is obvious that using a more permissive element pattern com-
parator for elements with the same label results in better accuracy — the best results
are accomplished using the very permissive Node-Subsumed (section 4.3.4) element
pattern comparator for elements with the same label. Using the Node-Subsumed el-
ement pattern comparator also for nodes with different labels then again results in
very poor accuracy ratings.

Attribute merging

Table 4.2 shows the results grouped by the different attribute set comparators used
in the evaluation. Ignoring the attribute sets (Merge) lead to the worst results, and
using a more permissive attribute set comparator for elements with the same label

70

4.4. Evaluation

Attribute pattern comparator Accuracy

Strict 0.9221
Strict + Same 0.9221
Strict + Equal 0.9239
Strict + Merge 0.9239
Same 0.9221
Same + Equal 0.9239
Same + Merge 0.9239
Equal 0.9195
Equal + Merge 0.9195
Merge 0.8987

Table 4.2.: Attribute comparators

again results in slightly better results. The best results are accomplished using the
Strict or Same comparator for elements with different labels and using Equal or Merge
for elements with the same label.

Pattern merging

There are no clear advantages for any of the pattern merging algorithms itself. Choos-
ing the correct pattern merging algorithm generally depends on the completeness of
the XML corpus which is analyzed. For a more complete corpus a less permissive algo-
rithm will obviously provide better results, since the number of false positive merges
will be reduced.

A more detailed analysis with sets of existing real-world XML instances, which
do not yet define a schema yet, could provide more detailed insight here. But this
requires either domain experts for the input XML, who can verify the results or
other algorithmic ways to automatically judge schema quality. Once algorithms are
developed which can test if one schema subsumes another schema one could also
perform this analysis on sets of XML instances with already defined schemas — but
this is still topic of current research.

71

©0OTDU e WN =

Chapter 4. Schema learning

4.5. Software

To perform the analysis a software had to be written which implements all the algo-
rithms mentioned in this work. The software is available at https://github.com/
kore/XML-Schema-learner and licensed under GPL 3 [16].

The software offers a simple Command Line Tool, which can be used to inference
schemas from XML data:

$./learn —help

Schema Learner

by Kore Nordmann

Usage: ./learn [—t <type>] <xml—files >

General options:

—t / —type Type of the schema to generate. Currently implemented schema
languages: dtd, xsd, bonxai

—h / ——help Display this help output
XML Schema / BonXai specific options:

—1 / —locality Locality of the types when inferencing XML Schema schemata.

Valid values are integer numbers, or ”"n”.

—a / ——attrComp Algorithm used to compare attributes in the type merger.
Available algorithms are ”strict”, ”"same”, ”"equals”, "merge”.

Defaults to "equals”.

—p / —ptrnComp Algorithm used to compare patterns in the type merger. Available

algorithms are ”exact”, "reduce”, "node—based”, ”subsumed” and
"node—subsumed”. If not specified, no types will be merged.
——snAttrComp Attribute comparator used for elements with the same name.

Only need to be specified if it differs from the attrComp.

——snPtrnComp Pattern comparator used for elements with the same name. Only
need to be specified if it differs from the ptrnComp.

The software is written in a clean object-oriented way and can be extended by
additional regular expression inferencing algorithms, type merging algorithms and
also produce other schema languages. For now it implements learning Document
Type Definitions [35], XML Schema definitions [36] and Bonxai schemas [12].

The algorithm used for type merging can be selected using shell Command Line
arguments and special comparators can be specified for elements with the same label,
as discussed in section 4.3.4.

Describing the software class diagram or the implementation in detail would exceed
the scope of this thesis.

72

https://github.com/kore/XML-Schema-learner
https://github.com/kore/XML-Schema-learner

Part I11.
Outlook

73

Outlook

The software described in section 4.4.5 already provides users with a way to infer
schemas, which can then be used to validate further documents, based on the algo-
rithms described and developed in this work.

As mentioned in section 4.3.4 during the evaluation further tests of the type com-
parators with real world XML data could provide further insight in which situations
which of the element pattern comparators are best.

This requires either working together with domain experts for the processed XML
corpus to manually verify the quality of the inferred schema and extract more use
cases for automatic verification or ways to algorithmically judge the quality of the
inferred schemas. One way to automatically verify the inferred schemas would be
checking if the inferred schema is subsumed by existing schemas for an analyzed XML
corpus. Testing for schema subsumption is still topic of current research.

A useful way to extend the software is adding means for simple type inference.
Inferencing simple types from XML instances has already been researched [21] and is
just a matter of extending the software, which already provides the necessary extension
points.

This work provides the means to infer XML Schema definitions. It has been shown
that the capabilities of RelaxNG are a strict superset of XML Schema [19]. Therefore
the software could be extended to also generate RelaxNG schemas, without using the
additional features. Additionally the algorithms can be extended to also infer schemas
using the full contextual power of RelaxNG, which especially means that attributes
would be part of the regular expressions describing the content model of elements.

RelaxNG also has the capability to define schemas for multiple namespace in one
schema definition file, while XML Schema and Document Type Definition require
multiple schema definition files for that. Since namespaces do not structurally change
anything when inferencing schemas from XML data, namespaces are currently ignored.
A valid extension to the software would be to maintain namespace information of
elements and attributes and use them when outputting the schemas. In case of XML
Schema or Document Type Definition this could result in multiple schemas with cross-
references.

75

Part IV.

Appendix

7

© 00 N O ook W N

35

4.6. XML Source code examples

4.6. XML Source code examples

4.6.1. Store

<store xmlns:sl="http://example.com/SchemaLearning” sl:type="store”>
<order sl:type="order”>
<customer sl:type="customer”>
<name sl:type="teztfield ">John Mitchell</name>
<email sl:type="teztfield” j.mitchell@example.com </email>
</customer>
<item sl:type="oder_item”>
<id sl:type="texztfield”> I18F </id>
<price sl:type="texztfield” 100 </price>
</item>
</order>
<stock sl:type="stock”>
<item sl:type="stock_item”>
<id sl:type="teztfield”> IG8 </id>
<qty sl:itype="teztfield”™ 10 </qty>
<supplier sl:type="supplier”™
<name sl:type="textfield”> Al Jones </name>
<email sl:type="textfield” a.j@example.net </email>
<email sl:type="teztfield”> a.j@example.org </email>
</supplier>
</item>
<item sl:type="stock_item 7>
<id sl:type="textfield”> J38H </id>
<qty sl:type="teztfield”™ 30 </qty>
<item sl:type="stock_item”>
<id sl:type="teztfield”> J38H1 </id>
<qty sl:itype="textfield”™> 10 </qty>
<supplier sl:type="supplier”>
<name sl:type="texztfield”> Al Jones </name>
<email sl:type="teztfield”> a.j@example.org </email>
</supplier>
</item>
<item sl:type="stock_item”>
<id sl:type="textfield”> J38H2 </id>
<qty sl:type="teztfield”™> 1 </qty>
<supplier sl:type="supplier”>
<name sl:type="teztfield”> Al Jones </name>
<email sl:type="texztfield”> a.j@example.org </email>
</supplier>
</item>
</item>
</stock>
</store>

4.6.2. Empty Types

79

e oW o =

w N o o«

© 0 N O oA W N -

e
w N = O

14
15
16
17

18
19

© 0 N O oA W N e

e e e =
AW N H O

Chapter 4. Schema learning

<html xmlns:sl="http://example.com/SchemaLearning” sl:type="html”>
<head sl:type="head”>
<meta name="keywords” value="key,_word” sl:type="meta” />
<meta name="description” value="This_.is_.a_.description” sl:type="meta
2 />
<title sl:type="title>Title</title>
<script type="text/ecmascript” src="scripts.js” slitype="script” />
</head>
</html>

4.6.3. Attributes

<html xmlns:sl="http://example.com/SchemaLearning” sl:type="html”>
<body sl:type="body”>
<hl sl:type="header”>Top level header</hl>

<h2 sl:type="header”>Second level header</h2>
<p sl:type="para”>Some text</p>
<ul sl:type="ul”>
<li sl:type="1i” class="first”>
<p slitype="para” class="note”>Note...</p>

</1li>
<li sl:type="1i">
<img sl:type="image” src="foo.png” alt="foo” width="16" height="
167 />
<p sl:type="para”>Note...</p>

<p>And another para with an inline image: <img sl:type="image” src=’
foo.png” alt="foo” title="Inline_image” /></p>
</body>
</html>

4.6.4. Ancestor Depth

4

<store xmlus:sl="http://example.com/SchemaLearning” sl:type="store”
<order sl:type="order”>
<category sl:type="order_category”>
<name sl:type="string”>Audi</name>
<car sl:itype="order_car”><type sl:type="string >A 4</type></car>
<car sl:itype="order_car”’><type sl:type="string”>A 6</type></car>
<car sl:itype="order_car”><type sl:type="string”>A 8</type></car>
</category>
<category sl:type="order_category”>
<name sl:type="string >BVMK/name>
<car sl:itype="order_car”’><type sl:type="string >X3</type></car>
<car sl:itype="order_car”><type sl:type="string”>X4</type></car>
<car sl:itype="order_car”><type sl:type="string”>525</type></car>
</category>

80

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

© 0 N O oA W N

e
= O

12
13
14
15
16
17
18
19
20
21

4.6. XML Source code examples

</order>
<stock sl:type="stock”>
<category sl:type="stock_category”>
<name sl:type="string”>Audi</name>
<car sl:type="stock_car”>
<type sl:itype="string>A 4</type>
<price sl:itype="string”>34958 EUR</price>
</car>
<car sl:type="stock_car”™>
<type sl:type="string”>A 6</type>
<price sl:type="string”>54958 EUR</price>
</car>
</category>
<category sl:type="stock_category”>
<name sl:type="string >BVMK/name>
<car sl:type="stock_car”>
<type slitype="string >X4&/type>
<price sl:itype="string”>34958 EUR</price>
</car>
<car sl:type="stock_car”™>
<type sl:type="string”>525</type>
<price sl:type="string”>54958 EUR</price>
</car>
</category>
</stock>
</store>

4.6.5. Reoccurent

<store xmlns:sl="http://example.com/SchemaLearning” sl:type="store”>

<order sl:type="order”>
<customer sl:type="customer”>
<name sl:type="teztfield ">John Mitchell</name>

<email sl:type="textfield”> j.mitchell@example.com </email>

</customer>
<item sl:type="oder_item”>
<id sl:type="teztfield”> I18F </id>
<price sl:type="texztfield”> 100 </price>
</item>
</order>
<stock sl:type="stock”>
<item sl:type="stock_item”>
<id sl:type="textfield”™> IG8 </id>
<qty sl:itype="teztfield”™ 10 </qty>
<supplier sl:type="supplier”>
<name sl:type="textfield”™ Al Jones </name>
<email sl:type="teztfield”> a.j@example.net </email>
<email sl:type="teztfield”> a.j@example.org </email>
</supplier>
</item>

81

Chapter 4. Schema learning

<item sl:type="stock_item”>
<id sl:type="texztfield”> J38H </id>
<qty sl:type="textfield”™ 30 </qty>
<item sl:type="stock_item”>
<id sl:type="texztfield”> J38H1 </id>
<qty sl:type="teztfield”™ 10 </qty>
<supplier sl:type="supplier”>
<name sl:type="texztfield”> Al Jones </name>
<email sl:type="teztfield”> a.j@example.org </email>
</supplier>
</item>
<item sl:type="stock_item ">
<id sl:type="textfield”> J38H2 </id>
<qty sl:type="texztfield”™> 1 </qty>
<supplier sl:type="supplier”>
<name sl:type="teztfield”> Al Jones </name>
<email sl:type="teztfield”> a.j@example.org </email>
</supplier>
</item>
</item>
</stock>
</store>

82

4.7. Evaluation results
Pattern comparator Strict Strict + Same Strict + Equal Strict + Merge Same Same + Equal Same + Merge Equal Equal + Merge Merge
Exact 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Exact + Reduce(.05) 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Exact + Reduce(.1) 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Exact + Reduce(.25) 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Exact + Reduce(.5) 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Exact + Node-Based 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Exact 4+ Subsumed: 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Exact + Node-Subsumed: 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.924 0.904
Reduce(.05): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.05) + Reduce(.1): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.05) + Reduce(.25): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.05) + Reduce(.5): 0.922 0.922 0.922 0.922 0.922 0.922 0922 0.922 0.922 0.902
Reduce(.05) + Node-Based: 0.922 0.922 0.922 0.922 0.922 0.922 0922 0.922 0.922 0.902
Reduce(.05) 4+ Subsumed: 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.05) + Node-Subsumed: 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.1): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.1) 4+ Reduce(.25): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.1) + Reduce(.5): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.1) 4+ Node-Based: 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0922 0.922 0.902
Reduce(.1) 4+ Subsumed: 0.922 0.922 0.922 0.922 0.922 0.922 0922 0.922 0.922 0.902
Reduce(.1) + Node-Subsumed: ~ 0.922 0.922 0.922 0.922 0.922 0.922 0922 0.922 0.922 0.902
Reduce(.25): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.25) + Reduce(.5): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.25) + Node-Based: 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.25) + Subsumed: 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.25) + Node-Subsumed: 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.5): 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Reduce(.5) 4+ Node-Based: 0.922 0.922 0.922 0.922 0.922 0.922 0922 0.922 0.922 0.902
Reduce(.5) + Subsumed: 0.922 0.922 0.922 0.922 0.922 0.922 0922 0.922 0.922 0.902
Reduce(.5) + Node-Subsumed: ~ 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.902
Node-Based: 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.907
Node-Based + Subsumed: 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.907
Node-Based + Node-Subsumed: 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.927 0.907
Subsumed: 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.846 0.846 0.816
Subsumed + Node-Subsumed: 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.846 0.846 0.816
Node-Subsumed: 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.827 0.827 0.797

Table 4.3.: Results for 1-local

4.7. Evaluation results

Results from the evaluation of the type merging algorithms with the examples shown

in Part IV.

If only one comparator is shown in a table row or column it means the same

comparator has been used for elements with and without the same labels.

If two

algorithms are mentioned like “Node-Based + Subsumed” it means that the first al-
gorithm (“Node-Based”) has been used for elements with different labels, and the
second (“Subsumed”) for elements with the same label.

The best values are highlighted as bold text and can be found in Table 4.4.

83

Chapter 4. Schema learning

Pattern comparator Strict Strict + Same Strict + Equal Strict + Merge Same Same + Equal Same + Merge Equal Equal + Merge Merge
Exact: 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925 0.925 0.905
Exact + Reduce(.05): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925 0.925 0.905
Exact + Reduce(.1): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925 0.925 0.905
Exact + Reduce(.25): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925 0.925 0.905
Exact + Reduce(.5): 0.927 0.927 0.929 0.929 0.927 0.929 0.925 0.925 0.905
Exact + Node-Based: 0.927 0.927 0.929 0.929 0.927 0.929 0.925 0.925 0.905
Exact + Subsumed: 0.930 0.930 0.933 0.933 0.930 0.933 0.933 0.933 0.913
Exact + Node-Subsumed: 0.940 0.940 0.943 0.943 0.943 0.943 0.923
Reduce(.05): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.05) + Reduce(.1): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.05) + Reduce(.25): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.05) + Reduce(.5): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.05) + Node-Based: 0.930 0.930 0.931 0.931 0.928 0.928 0.908
Reduce(.05) + Subsumed: 0.932 0.932 0.936 0.936 0.936 0.936 0.916
Reduce(.05) + Node-Subsumed: 0.939 0.939 0.943 0.943 0.943 0.943 0.923
Reduce(.1): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.1) + Reduce(.25): 0.932 0.932 0.934 0.934 0.931 0931 0.911
Reduce(.1) + Reduce(.5): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.1) + Node-Based: 0.930 0.930 0.931 0.931 0.928 0.928 0.908
Reduce(.1) + Subsumed: 0.932 0.932 0.936 0.936 0.936 0.936 0.916
Reduce(.1) + Node-Subsumed: ~ 0.939 0.939 0.943 0.943 0.943 0.943 0.923
Reduce(.25): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.25) + Reduce(.5): 0.932 0.932 0.934 0.934 0.931 0.931 0.911
Reduce(.25) + Node-Based: 0.930 0.930 0.931 0.931 0.928 0.928 0.908
Reduce(.25) + Subsumed: 0.932 0.932 0.936 0.936 0.936 0.936 0.916
Reduce(.25) + Node-Subsumed: 0.939 0.939 0.943 0.943 0.943 0.943 0.923
Reduce(.5): 0.932 0.932 0.934 0.934 0.931 0931 0.911
Reduce(.5) + Node-Based: 0.930 0.930 0.931 0.931 0.928 0.928 0.908
Reduce(.5) + Subsumed: 0.932 0.932 0.936 0.936 0.936 0.936 0.916
Reduce(.5) + Node-Subsumed: 0.939 0.939 0.943 0.943 0.943 0.943 0.923
Node-Based: 0.926 0.926 0.928 0.928 0.924 0.924 0.904
Node-Based + Subsumed: 0.929 0.929 0.932 0.932 0.932 0.932 0912
Node-Based + Node-Subsumed: 0.942 0.942 0.946 0.946 0.946 0.946 0.926
Subsumed: 0.901 0.901 0.901 0.901 0.874 0.874 0.844
Subsumed + Node-Subsumed: 0.911 0.911 0.911 0.911 0.884 0.884 0.854
Node-Subsumed: 0.909 0.909 0.909 0.909 0.873 0.873 0.843
Table 4.4.: Results for 2-local

Pattern comparator Strict Strict + Same Strict + Equal = Strict + Merge Same Same + Equal Same + Merge Equal Equal + Merge Merge
Exact: 0.926 0.926 0.928 0.928 0.926 0.928 0.928 0.925 0.925 0.905
Exact + Reduce(.05): 0.926 0.926 0.928 0.928 0.926 0.928 0.928 0.925 0.925 0.905
Exact + Reduce(.1): 0.926 0.926 0.928 0.928 0.926 0.928 0.928 0.925 0.925 0.905
Exact + Reduce(.25): 0.926 0.926 0.928 0.928 0.926 0.928 0.928 0.925 0.925 0.905
Exact + Reduce(.5): 0.926 0.926 0.928 0.928 0.926 0.928 0.928 0.925 0.925 0.905
Exact + Node-Based: 0.928 0.928 0.929 0.929 0.928 0.929 0.929 0.926 0.926 0.906
Exact + Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934 0.934 0.914
Exact + Node-Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934 0. ‘)%4 0.914
Reduce(.05): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.05) + Reduce(.1): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.05) + Reduce(.25): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.05) + Reduce(.5): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925

Reduce(.05) + Node-Based: 0.928 0.928 0.929 0.929 0.928 0.929 0.929 0.926
Reduce(.05) + Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Reduce(.05) + Node-Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Reduce(.1): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.1) + Reduce(.25): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.1) + Reduce(.5): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.1) + Node-Based: 0.928 0.928 0.929 0.929 0.928 0.929 0.929 0.926
Reduce(.1) + Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Reduce(.1) 4+ Node-Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Reduce(.25): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.25) + Reduce(.5): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.25) + Node-Based: 0.928 0.928 0.929 0.929 0.928 0.929 0.929 0.926
Reduce(.25) + Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Reduce(.25) + Node-Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Reduce(.5): 0.927 0.927 0.929 0.929 0.927 0.929 0.929 0.925
Reduce(.5) + Node-Based: 0.928 0.928 0.929 0.929 0.928 0.929 0.929 0.926
Reduce(.5) + Subsumed: 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Reduce(.5) + Node-Subsumed: ~ 0.930 0.930 0.934 0.934 0.930 0.934 0.934 0.934
Node-Based: 0.926 0.926 0.928 0.928 0.926 0.928 0.928 0.925
Node-Based + Subsumed: 0.929 0.929 0.932 0.932 0.929 0.932 0932 0.932
Node-Based + Node-Subsumed: 0.931 0.931 0.935 0.935 0.931 0.935 0.935 0.935
Subsumed: 0.908 0.908 0.908 0.908 0.908 0.908 0.908 0.880
Subsumed + Node-Subsumed: 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.883
Node-Subsumed: 0.909 0.909 0.909 0.909 0.909 0.909 0.909 0.872

Table 4.5.: Results for 3-local

84

4.7.

Evaluation results

Pattern comparator Strict Strict + Same Strict + Equal Strict + Merge Same Same + Equal Same + Merge Equal Equal + Merge Merge
Exact: 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact + Reduce(.05): 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0915 0.915 0.895
Exact + Reduce(.1): 0.917 0.917 0.919 0.919 0917 0.919 0.919 0915 0.915 0.895
Exact + Reduce(.25): 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact + Reduce(.5): 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.920 0.916 0.916 0.896
Exact 4+ Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.924 0.904
Exact + Node-Subsumed: 0.922 0.922 0.925 0.925 0.922 0.925 0.925 0.925 0.925 0.905
Reduce(.05): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.05) + Reduce(.1): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.05) + Reduce(.25): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.05) + Reduce(.5): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.05) + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.916 0.916 0.896
Reduce(.05) + Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.904
Reduce(.05) + Node-Subsumed: 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.905
Reduce(.1): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.1) + Reduce(.25): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.1) + Reduce(.5): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.1) 4+ Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.916 0.916 0.896
Reduce(.1) 4+ Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.904
Reduce(.1) + Node-Subsumed: ~ 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.905
Reduce(.25): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.25) + Reduce(.5): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.25) + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.916 0.916 0.896
Reduce(.25) 4+ Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.904
Reduce(.25) 4+ Node-Subsumed: 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.905
Reduce(.5): 0.918 0.918 0.919 0.919 0.918 0.919 0.916 0.916 0.896
Reduce(.5) + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.916 0.916 0.896
Reduce(.5) + Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0924 0.924 0.904
Reduce(.5) + Node-Subsumed: ~ 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.905
Node-Based: 0.917 0.917 0.919 0.919 0.917 0.919 0.915 0.915 0.895
Node-Based + Subsumed: 0.919 0.919 0.923 0.923 0.919 0.923 0.923 0.923 0.903
Node-Based + Node-Subsumed: 0.923 0.923 0.926 0.926 0.923 0.926 0.926 0.926 0.906
Subsumed: 0.900 0.900 0.900 0.900 0.900 0.900 0.873 0.873 0.843
Subsumed + Node-Subsumed: 0.903 0.903 0.903 0.903 0.903 0.903 0.875 0.875 0.845
Node-Subsumed: 0.902 0.902 0.902 0.902 0.902 0.902 0.865 0.865 0.835
Table 4.6.: Results for 4-local
Pattern comparator Strict Strict + Same Strict + Equal Strict + Merge Same Same + Equal Same + Merge Equal Equal + Merge Merge
Exact: 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact + Reduce(.05): 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact + Reduce(.1): 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact + Reduce(.25): 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact + Reduce(.5): 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Exact 4+ Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.920 0.916 0.916 0.896
Exact + Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0924 0.924 0.904
Exact + Node-Subsumed: 0.922 0.922 0.925 0.925 0.922 0.925 0.925 0.925 0.925 0.905
Reduce(.05): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.05) + Reduce(.1): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.05) + Reduce(.25): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.05) + Reduce(.5): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.05) + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.920 0.916 0.916 0.896
Reduce(.05) + Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.924 0.904
Reduce(.05) + Node-Subsumed: 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.925 0.905
Reduce(.1): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.1) + Reduce(.25): 0.918 0.918 0.919 0.919 0918 0.919 0.919 0.916 0.916 0.896
Reduce(.1) + Reduce(0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.1) + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.920 0.916 0.916 0.896
Reduce(.1) + Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.924 0.904
Reduce(.1) + Node-Subsumed: ~ 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.925 0.905
Reduce(.25): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.25) + Reduce(.5): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.25) + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.920 0.916 0.916 0.896
Reduce(.25) + Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.924 0.904
Reduce(.25) + Node-Subsumed: 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.925 0.905
Reduce(.5): 0.918 0.918 0.919 0.919 0.918 0.919 0.919 0.916 0.916 0.896
Reduce(.5) + Node-Based: 0.918 0.918 0.920 0.920 0.918 0.920 0.920 0.916 0.916 0.896
Reduce(.5) + Subsumed: 0.920 0.920 0.924 0.924 0.920 0.924 0.924 0.924 0.924 0.904
Reduce(.5) + Node-Subsumed: ~ 0.921 0.921 0.925 0.925 0.921 0.925 0.925 0.925 0.925 0.905
Node-Based: 0.917 0.917 0.919 0.919 0.917 0.919 0.919 0.915 0.915 0.895
Node-Based + Subsumed: 0.919 0.919 0.923 0.923 0.919 0.923 0.923 0.923 0.923 0.903
Node-Based + Node-Subsumed: 0.923 0.923 0.926 0.926 0.923 0.926 0.926 0.926 0.926 0.906
Subsumed: 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.873 0.873 0.843
Subsumed + Node-Subsumed: 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.875 0.875 0.845
Node-Subsumed: 0.902 0.902 0.902 0.902 0.902 0.902 0.902 0.865 0.865 0.835

Table 4.7.: Results for Full path

85

List of Tables

2.1.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

REDUCE evaluation results 31
Found XML Schema definitions 39
PageRank of XML Schema definitions 44
Occurrence of <all> 45
Counting patterns per schema 46
Counting patterns per type 47
Ancestor depth per schema 49
Ancestor depth per type 49
Usage of multiple types for the same label 50
Usage of multiple labels for the same type 51
Ancestor depth 70
Attribute comparatorso 71
Results for 1-local 83
Results for 2-local 84
Results for 3-local 84
Results for 4-local 85
Results for Full path oo 85

87

List of Figures

3.1. Max occurrence distribution
3.2. Min occurrence distribution

89

Bibliography

1]

[10]

[11]

Arnaud Sahuguet. Everything you ever wanted to know about DTDs, but were
afraid to ask. In WebDB-2000, 2000.

D. Barbosa, L. Mignet, and P. Veltri. Studying the XML web: Gathering statis-
tics from an XML sample. World Wide Web, 9(2):187-212, 2006.

M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of
DTDs. J. ACM, 55(2), 2008.

G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren. Learning deterministic
regular expressions for the inference of schemas from XML data. In WWW "08:
Proceeding of the 17th international conference on World Wide Web, pages 825—
834, New York, NY, USA, 2008. ACM.

G. J. Bex, F. Neven, and J. V. den Bussche. DTDs versus XML schema: A
practical study. In S. Amer-Yahia and L. Gravano, editors, WebDB, pages 79—
84, 2004.

G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs
from XML data. In VLDB ’06: Proceedings of the 32nd international conference
on Very large data bases, pages 115-126. VLDB Endowment, 2006.

G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML schema definitions
from XML data. In VLDB ’07: Proceedings of the 33rd international conference
on Very large data bases, pages 998-1009. VLDB Endowment, 2007.

A. Briiggemann-Klein and D. Wood. One-unambiguous regular languages. ic,
142(2):182-206, 1998.

D. Che, K. Aberer, and M. T. Ozsu. Query optimization in XML structured-
document databases. VLDB J, 15(3):263-289, 2006.

R. Cover. The CoverPages. http://xml.coverpages.org/, Nov 2010. [Online;
Accessed November 2010].

A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
STORED. SIGMOD Record (ACM Special Interest Group on Management of
Data), 28(2):431-77, 1999.

91

http://xml.coverpages.org/

Bibliography

[12]

[13]

[14]

[15]

92

N. Douib, O. Garbe, D. Giinther, D. Oliana, J. Kroniger, F. Liicke, T. Melikoglu,
K. Nordmann, G. Oezen, T. Schlitt, L. Schmidt, J. Westhoff, and D. Wolff. PG
530: Pattern based schema languages. Oct. 2009.

F. Du, S. Amer-Yahia, and J. Freire. ShreX: Managing XML documents in
relational databases. In M. A. Nascimento, M. T. Ozsu, D. Kossmann, R. J.
Miller, J. A. Blakeley, and K. B. Schiefer, editors, VLDB, pages 1297-1300.
Morgan Kaufmann, 2004.

T. O. for the Advancement of Structured Information Standards. RELAX
NG compact syntax. http://www.oasis-open.org/committees/relax-ng/
compact-20021121.html, November 2002. [Online; Accessed November 2010].

O. for the Advancement of Structured Information Standards (OASIS). DocBook
V4.5 W3C XML Schema. http://www.docbook.org/xsd/4.5/, Nov 2010. [On-
line; Accessed November 2010].

I. Free Software Foundation. GNU general public license. http://www.gnu.org/
licenses/gpl-3.0.txt, Nov 2010. [Online; Accessed November 2010].

J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon. StatiX: making
XML count. In M. Franklin, B. Moon, and A. Ailamaki, editors, Proceedings
of the ACM SIGMOD International Conference on Management of Data, June
3-6, 2002, Madison, WI, USA, pages 181-191, pub-ACM:adr, 2002. ACM Press.

P. Garcia and E. Vidal. Inference of k-testable languages in the strict sense
and application to syntactic pattern recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-12(9):920-925, Sept. 1990.

W. Gelade and F. Neven. Succinctness of pattern-based schema languages for
XML. In M. Arenas and M. I. Schwartzbach, editors, DBPL, volume 4797 of
Lecture Notes in Computer Science, pages 201-215. Springer, 2007.

E. M. Gold. Language identification in the limit. Information and Control,
10(5):447-474, 1967.

J. Hegewald, F. Naumann, and M. Weis. XStruct: Efficient schema extraction
from multiple and large XML documents. In R. S. Barga and X. Zhou, editors,
ICDE Workshops, page 81. IEEE Computer Society, 2006.

C.-C. Kanne and G. Moerkotte. Efficient storage of XML data. In ICDFE, page
198, 2000.

C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. Schema-based
scheduling of event processors and buffer minimization for queries on structured
data streams. CoRR, ¢s.DB/0406016, 2004. informal publication.

http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.docbook.org/xsd/4.5/
http://www.gnu.org/licenses/gpl-3.0.txt
http://www.gnu.org/licenses/gpl-3.0.txt

Bibliography

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

A. H. F. Laender, M. M. Moro, C. Nascimento, and P. Martins. An X-ray on
web-available XML schemas. SIGMOD Record, 38(1):37-42, 2009.

M. Ley. The DBLP computer science bibliography. http://www.informatik.
uni-trier.de/~ley/db/, Nov 2010. [Online; Accessed November 2010].

I. Manolescu, D. Florescu, and D. K. Kossmann. Answering XML queries over
heterogeneous data sources. In Proceedings of the 27th International Conference
on Very Large Data Bases(VLDB °01), pages 241-250, Orlando, Sept. 2001.
Morgan Kaufmann.

W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and com-
plexity of XML Schema. ACM Transactions on Database Systems, 31(3):770-813,
Sept. 2006.

L. Mignet, D. Barbosa, and P. Veltri. The XML web: a first study. In WWW,
pages 500-510, 2003.

M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema lan-
guages using formal language theory. ACM Transactions on Internet Technology
(TOIT), 5(4):660-704, Nov. 2005.

F. Neven and T. Schwentick. On the complexity of XPath containment in the
presence of disjunction, DTDs, and variables. CoRR, abs/cs/0606065, 2006.
informal publication.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation rank-
ing: Bringing order to the web. Technical Report SIDL-WP-1999-0120, Stanford
University, Nov. 1999.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257-286, 1989.

W. M. Rand. Objective criteria for the evaluation of clustering methods. Amer-
ican Statistical Association Journal, 66(336):846-850, 1971.

W3C. XML Schema part 1: Structures. http://www.w3.org/TR/2001/
PR-xmlschema-1-20010316/, March 2001. [Online; Accessed November 2010).

W3C. Extensible markup language (XML) 1.0 (fifth edition). http://www.w3.
org/TR/REC-xml/#dt-doctype, November 2008. [Online; Accessed November
2010].

W3C. W3C XML Schema definition language. http://www.w3.org/TR/
xmlschemall-1/, December 2009. [Online; Accessed 13-December-2009].

93

http://www.informatik.uni-trier.de/~ley/db/
http://www.informatik.uni-trier.de/~ley/db/
http://www.w3.org/TR/2001/PR-xmlschema-1-20010316/
http://www.w3.org/TR/2001/PR-xmlschema-1-20010316/
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/REC-xml/#dt-doctype
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/xmlschema11-1/

Bibliography

[37] W3C. XHTML™ 1.1 - module-based XHTML - second edition. http://www.
w3.org/TR/xhtml11/, Nov 2010. [Online; Accessed November 2010].

[38] G. Wang, M. Liu, J. X. Yu, B. Sun, G. Yu, J. Lv, and H. Lu. Effective schema-

based XML query optimization techniques. In IDEAS, pages 230-235. IEEE
Computer Society, 2003.

94

http://www.w3.org/TR/xhtml11/
http://www.w3.org/TR/xhtml11/

	State of the art
	Schema analysis
	Schema usage
	Schema structure
	Regular expressions
	XML Schema type properties

	Schema learning algorithms
	Inferring Single Occurrence Regular Expressions
	Definitions
	Inferring SOAs
	From SOA to SORE

	Inferring Chain Regular Expressions
	Inferring k-Occurrence Regular Expressions
	XML Schema definitions
	Structure of XML Schema
	Inference of local XML Schema definitions
	Minimization

	Development
	Schema analysis
	Finding XML Schema definitions
	Schema downloading
	Schema normalization
	Extract anonymous types
	Inlining groups
	Evaluating inheritance
	Other simplifications

	Schema ranking
	Schema support
	PageRank

	Calculation of statistics
	Child patterns
	Typing mechanism
	Comparison

	Conclusion

	Schema learning
	XML Schema definition
	Regular expression learning enhancements
	Extending REWRITE
	Extending CRX

	Type merging
	The algorithm
	Implementation of similar()
	Attribute comparison
	Element comparison

	Evaluation
	Source datasets
	Extracted examples
	Verification
	Experiment settings
	Evaluation results

	Software

	Outlook
	Appendix
	XML Source code examples
	Store
	Empty Types
	Attributes
	Ancestor Depth
	Reoccurent

	Evaluation results

	List of Tables
	List of Figures
	Bibliography

