
VizProg: Identifying Misunderstandings By Visualizing Students’
Coding Progress

Ashley Zhang
University of Michigan

Ann Arbor, Michigan, USA
gezh@umich.edu

Yan Chen
Virginia Tech

Blacksburg, Virginia, USA
ych@vt.edu

Steve Oney
University of Michigan

Ann Arbor, Michigan, USA
soney@umich.edu

ABSTRACT
Programming instructors often conduct in-class exercises to help
them identify students that are falling behind and surface students’
misconceptions. However, as we found in interviews with program-
ming instructors, monitoring students’ progress during exercises is
difficult, particularly for large classes. We present VizProg, a sys-
tem that allows instructors to monitor and inspect students’ coding
progress in real-time during in-class exercises. VizProg represents
students’ statuses as a 2D Euclidean spatial map that encodes the
students’ problem-solving approaches and progress in real-time.
VizProg allows instructors to navigate the temporal and structural
evolution of students’ code, understand relationships between code,
and determine when to provide feedback. A comparison experiment
showed that VizProg helped to identify more students’ problems
than a baseline system. VizProg also provides richer and more com-
prehensive information for identifying important student behavior.
By managing students’ activities at scale, this work presents a new
paradigm for improving the quality of live learning.

KEYWORDS
programming education at scale, code visualization

ACM Reference Format:
Ashley Zhang, Yan Chen, and Steve Oney. 2023. VizProg: Identifying Mis-
understandings By Visualizing Students’ Coding Progress. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3544548.3581516

1 INTRODUCTION
Programming instructors often conduct in-class coding exercises—
short programming activities that students perform independently—
to give students hands-on practice, assess students’ progress, and
identify students that are falling behind. By identifying and work-
ing with struggling students, instructors can strengthen students’
understanding of the material and give them a better intuition for
important concepts. However, if left unaddressed, small misunder-
standings can escalate to become long-term learning barriers for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581516

students. Therefore, instructors should be able to identify strug-
gling students and their misunderstandings during in-class exer-
cises promptly and reliably. However, identifying problems in real
time is difficult for several reasons. First, misunderstandings tend
to be implicit, abstract, and not readily apparent without carefully
reading students’ code. However, it is often not possible to read stu-
dents’ code at scale in large classes or for shorter exercises. Second,
there are many aspects of students’ code (including aspects that the
instructor might not anticipate) that instructors need to consider
to gain insight into potential learning barriers. This suggests that
there needs to be a better way to monitor students’ code at scale.

Past research has explored ways to address these challenges. For
example, Codeopticon [16] allows instructors to monitor students’
code in real-time. However, Codeopticon requires that instructors
read students’ code individually, making it difficult to assess stu-
dents’ performance as a whole, particularly when needing to scale
to large classes. Overcode [14] addresses the scalability issue by
clustering and visualizing student code submissions [14]. However,
it was designed for post-hoc analyses rather than providing real-
time feedback and does not consider the need to monitor students
over time. We also found in our interviews with programming in-
structors that time sensitivity and large class sizes make it difficult
for instructors to identify learning challenges during in-lecture exer-
cises. Ideally, instructors should be able to easily identify problems
among many students’ coding activities in real-time.

In this paper, we propose new techniques to address these prob-
lems and allow instructors to visualize and understand students’
status in real-time for in-class programming exercises. Our design
takes inspiration from maps of physical spaces. On a map, if we
know a person’s starting point, destination, and location, we can
easily determine how close they are to their destination. With real-
time updates, we could also determine if they are progressing to
their destination or if they might be lost. What if checking where a
student is on a programming exercise could be as easy as seeing
where they are on a map? Although prior work has represented
code in 2-D spaces [14, 19, 36], our approach is the first to do so
in a way that explicitly encodes human-understandable meaning
to the space (their problem-solving approach and their progress)
and that can work in real-time (as students are typing). This work
represents an initial step to show the feasibility and benefits of this
approach.

We introduce VizProg, a tool that allows instructors to monitor
and inspect large numbers of students’ coding submissions over
time by presenting students on a 2D map. In VizProg, students’
status is represented as a position that encodes 1) similarities in stu-
dents’ code (as 2D Euclidean distances); 2) how students approach
the exercise (using vertical space); 3) students’ progress—how close

https://orcid.org/0000-0001-5978-3714
https://orcid.org/0000-0002-1646-6935
https://orcid.org/0000-0002-5823-1499
https://doi.org/10.1145/3544548.3581516
https://doi.org/10.1145/3544548.3581516

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

they are to a correct solution (using horizontal space); and 4) how
students’ status changes over time. This is done by computing the
semantic similarity and edit distance between students’ code and
solution code. Additionally, VizProg allows instructors to navigate
the temporal and structural evolution of students’ code at differ-
ent levels of granularity, understand relationships between code,
determine when to provide feedback, and assess who might need
feedback the most.

We conducted a within-subject experiment to evaluate the ef-
fectiveness of VizProg. In a simulated live coding exercise setting,
we found that compared to a baseline system, VizProg can help
participants to 1) discover more than twice as many student mis-
understandings, and 2) find the misunderstandings with less than
half of the time and fewer interactions. Furthermore, participants
reported that VizProg provides richer and more comprehensive
information for identifying important student behaviors. This work
can help instructors improve the live learning experience by bet-
ter understanding students’ mental models and providing tailored
feedback at scale. This work makes the following contributions:

• A better understanding of the needs and challenges that
instructors have when monitoring students’ in-class coding
exercise, based on interviews with programming instructors.

• A novel algorithm for representing students’ progress in
coding exercises as a 2D Euclidean spatial map that encodes
their approach and progress towards a solution.

• VizProg, a system that builds on this algorithm to facilitate
monitoring students’ progress in real-time.

• Evidence showing that VizProg can help identify more mis-
conceptions and important student behaviors in coding ex-
ercises than a baseline system.

2 RELATEDWORK
VizProg is inspired by and primarily contributes to two research
fields: programming education at scale, and source code visualiza-
tion.

2.1 Programming Education at Scale
2.1.1 Understanding Students’ Progress. Prior research has recog-
nized the importance and difficulty of instructors understanding
students’ progress in programming exercises. For instance, Markel
and Guo examined the step-by-step dynamic of one-on-one tu-
toring by undergraduate teaching assistants (TA) in a laboratory
study [23]. Their research suggests that TAs’ greatest difficulty is
understanding students’ mental models of course content. Further,
early-stage students often have difficulty phrasing their questions
clearly and make wrong assumptions about their problems, mak-
ing it challenging for instructors to understand what they struggle
with [23]. Wang et al. also conducted interviews with instructors
and identified challenges they face when coordinating in-class pro-
gramming exercises [38]. They describe how time and physical
constraints make it difficult to observe students’ progress while
conducting in-class programming exercises. Due to the lack of
understanding of students’ backgrounds, it is also difficult to pair
students for discussion bymatching those with similar backgrounds.
Our interview studies corroborate these findings.

Prior work has also proposed ways to help instructors better
understand students’ progress and thought processes. Kim et al.
introduce RIMES [21], which supports authoring, recording, and
reviewing interactive exercises in video lectures to give insights
into students’ thought process. RIMES was found to be useful in
identifying and helping struggling students, as well as providing
qualitative feedback to students [21]. Guo developed Codeopti-
con, an interface that enables instructors to get a real time view
of students’ actions by monitoring and chatting with dozens of
students [16]. However, these tools are limited to small-scale ses-
sions where instructors have the bandwidth to provide one-on-one
feedback. VizProg instead proposes using a visualization approach
to understand students’ progress at scale. Its visualization is com-
plementary to prior approaches and could be used in combination
with them.

2.1.2 Providing Feedback At Scale. In order to generate feedback
that scales to large introductory programming courses while still
ensuring feedback is personalized enough to be helpful, instruc-
tors need to understand the variation among student solutions
and what they struggle with. Markel and Guo discussed the differ-
ence between teaching generalizable knowledge and fixing bugs
in introductory programming courses [23]. Teaching generalizable
knowledge requires instructors to understandwhat knowledge each
student comprehends and struggles with.

Researchers developed systems to help instructors understand
students’ solutions and provide feedback at scale. Nbgrader helps
instructors generate feedback at scale by automatically generating a
student version of Jupyter Notebook without solutions and grading
assignments using notebooks executing results [1]. Overcode and
Foobaz use the same clustering pipeline to generate feedback for
correct student code solutions at scale [13, 14]. Autostyle uses clus-
tering tools to broadcast actionable hints asynchronously regarding
code style as well as the correctness and completeness of code
solutions [25]. Singh et al. present a feature grammar to capture
semantic relationships within programs and a supervised model
to grade programming exercises in an independent manner [32].
Singh et al. also introduce a system using reference code and po-
tential corrections to errors to automatically provide feedback for
introductory programming problems [33]. Head et al. proposed Mis-
takeBrowser and FixPropagator to generate feedback for incorrect
solutions by clustering the transformation of fixing buggy pro-
grams [18]. Other research uses crowdsourcing to generate timely,
customized feedback at scale. TutorASSIST provides on-demand
assistance to students by crowdsourcing from teachers outside the
classroom [27]. AXIS provides learners with crowd-sourced expla-
nations on how to solve a problem from MTurk and allows learners
to revise and evaluate them [40].

Most of the works mentioned above are designed to give asyn-
chronous feedback [1, 13, 14, 18, 25, 33], but have not been applied
to real-time feedback generation. PuzzleMe makes it easier for in-
structors to provide feedback at scale by using peer assessment,
where students test and review peer’s solutions [38]. Codeopticon
helps instructors give students support in real time by watching
students editing and debugging and chatting with them [16]. How-
ever, these tools are not meant to help instructors understand stu-
dents’ solutions at scale in large classrooms, as VizProg is designed

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress CHI ’23, April 23–28, 2023, Hamburg, Germany

for. Codeopticon shows a list of tiles with every student’s coding
process and a chat box, which can be very messy at scale. The pro-
cess of checking on each student’s status to give feedback is time-
consuming for instructors. Moreover, Codeopticon does not support
instructors in understanding students’ progress, since instructors
focus on directly solving students’ problems. It is challenging for
instructors to get a general sense of the whole classroom using
these tools. To overcome these problems, we designed VizProg,
which visualized students’ progress in a large classroom to help
instructors understand issues and provide feedback in real-time.

2.1.3 Artificial Intelligence in Education. Artificial Intelligence (AI)
has an increasingly important role in education [5]. Most of these
systems aim to complement instructors by helping them scale
their capabilities—for example, by producing immediate helpful
responses to frequently asked questions [15], picking practice prob-
lems that are appropriate for a given student [7], and allowing
instructors to create course-specific intelligent tutoring systems
that give students hands-on problem solving guidance [39]. VizProg
and our algorithms for representing code in 2D maps fit within
the larger research area of AI in education. VizProg leverages AI
to help instructors make more informed decisions while teaching.
By better understanding which students are struggling, how many
students are struggling, the problem solving approaches that stu-
dents take, and the speed of progress, instructors can adapt their
in-class exercises to be more responsive to students. For example,
they might use this information to decide when to help individual
students, to address common issues with the whole class, whether
to extend the time given for an exercise, or how to group students
into mixed teams for group exercises.

2.2 Code Visualization
2.2.1 Two-Dimensional Visualizations of Code. Prior work has ex-
plored ways to visualize code in two-dimensional space. Taniguchi
et al. built a system that visualizes mutual edit distances between
large groups of code [36]. They use these distances to compute
high-dimensional vectors for every code sample in a larger set and
use T-SNE [37] to reduce to two dimensions. There are two key
limitations to this approach that VizProg aims to address. First,
although there is a clear meaning to the relative positions of two
points (closer means smaller edit distance), there is no clear human-
understandable meaning for the absolute position of code locations.
Thus, it can be difficult to tell if students are making progress. Sec-
ond, there is no clear way to represent different approaches or the
differences between approaches, as there is no semantic information
included in the visualization.

Similarly, Huang et al. [19] mapped out semantic similarity be-
tween students’ submissions in a Massive Open Online Course
(MOOC). They used syntactic and functional similarity metrics to
create their 2-D maps. However, again, this produces a visualization
where there is meaning in the relative positions of code locations
but no clear meaning in the absolute positions of code embeddings.
Researchers have also used clustering methods to create visual-
izations of code without 2-D position meaning [14]. For instance,
OverCode [14] visualizes a list of code clusters from correct student
solutions, ordering them by cluster sizes. However, visualization
without position meaning is insufficient for instructors to track

and understand the students’ progress in real-time, such as how
students come up with a solution from scratch.

2.2.2 Clustering Submissions. The high variances in students’ code
and its high dimensionality make it difficult to interpret students’
behaviors in a scalable manner. However, clustering students’ code
in real timemay help reduce the number of submissions that instruc-
tors need to manually check. Researchers have explored approaches
that combine visualization and clustering techniques to reduce the
instructor’s workload and the number of variations they have to
handle. The ability to identify and cluster semantically similar sub-
missions in a robust, general manner presents both an opportunity
and a challenge. Earlier work clusters code submissions with Ab-
stract Syntax Tree (AST) edit distance in order to evaluate syntax
similarity and functional similarity [19]. Kaleeswaran et al. analyze
data submissions on DP programming exercises by solution strat-
egy, checking how students manipulate arrays in their solution [20].
The Codewebs project created a method for quickly determining se-
mantically equivalent code snippets and allowing efficient indexing
of all submissions within MOOC programming assignments [26].
Overcode uses both static and dynamic analysis to cluster simi-
lar, correct code submissions that perform the same computation,
and provides a visualization to help instructors understand code
solution variation [14]. Building on Overcode, Head et al. propose
to cluster incorrect code solutions by transformation rather than
clustering only correct solutions [18]. This helps instructors better
understand students’ bugs and create reusable feedback that scales
to a large class. Piech et al. introduced a method to encode student
programs as embeddings in neural networks and propose feedback
generation at scale based on the clusters learned on the embedding
space [28].

In addition to clustering tools, there is a series of tools that
support comparison between programs. File comparison tools like
Microsoft Win Diff highlights text that is different between files.
Schleimer et al. proposes MOSS for finding similarities among stu-
dent programs to detect plagiarism [31]. Taherkhani et al. use ma-
chine learning methods to identify sorting algorithm implementa-
tion [34, 35]. With the ability of clustering techniques to support
generating feedback at scale, we provide process information that
had been overlooked by previous clustering tools to make feedback
tailored for students’ problems while simultaneously supporting
introductory programming courses at scale.

2.2.3 Real time code sharing. To support instructors observing stu-
dents’ progress in programming exercises, one challenge is to maxi-
mize the use of information on students’ progress in real time code
sharing. Real time code sharing between instructors and students
offers many benefits to introductory programming courses. Prior
research has shown that real-time code sharing could minimize
context switching, facilitates knowledge sharing, lowers both stu-
dent’s cognitive load and instructor’s teaching load, and improves
student engagement in classes [3, 4, 17, 38]. Instructors share code
in real-time in settings including MOOCs, lecture videos, online
livestreams, and real classrooms [6]. Real time code sharing facili-
tates communication between students and instructors. Instructors
broadcast programming activities to students, and students share
their progress with instructors. Researchers have developed a series
of tools to support real time code sharing in educational settings.

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

For instance, Chen and Guo developed Improv, which synchro-
nizes code and output blocks with slides, therefore minimizing
context switching and lowering cognitive load [4]. The Codestrates
platform integrates code sharing into literate computing for col-
laboration on computational notebooks [29]. Borowski et al. use
Codestrates to support real time code sharing among students in
computational notebooks [2]. Codechella combines automated vi-
sualization of running states with real-time code sharing in online
educational settings to enable learners to remember, comprehend
and apply knowledge [17]. PuzzleMe combines peer assessment
with real time code sharing where students share test cases and
provide timely feedback to their peers, thus helping instructors
create engaging introductory programming courses [38]. Byun et
al. proposed CoCode, a visual program that shows students’ code
editors and output in real time to improve student’s social presence
for online courses [3]. While promising, this work is limited to small
scale code sharing. VizProg shares all students’ code at a keystroke
level and visualizing them at scale in an easily interpretable way
for instructors to analyze students’ behaviors.

3 NEEDS AND CHALLENGES IN IN-CLASS
CODING EXERCISES

We conducted interviews to better understand how instructors
conduct and monitor in-class coding exercises. Our interviews al-
lowed us to better understand how well existing practices and tools
work. We recruited six participants (three self-identified as women,
three as men) who had taught introductory programming classes
in which they conducted in-class coding exercises. The classes the
participants taught had more than 150 students. We found our
participants through local mailing lists and personal connections.
Participants had no prior knowledge of the purpose of the inter-
views. We asked participants about how they currently conduct
in-class coding exercises, how they monitor and understand stu-
dents’ progress, how they provide feedback, when they move on,
and how their future teaching strategies can be influenced by their
students’ performance. We summarize our key findings from these
interviews as one need and three challenges below.

3.1 Need 1 (N1): Need to see students’ coding
progress in real-time

Four out of six participants (P1, P2, P4, P5) mentioned the im-
portance of monitoring students’ coding progress during in-class
exercises. According to these participants, knowing the progress of
the exercise can allow them to gain a more detailed understanding
of their students’ knowledge in the specific topics, provide more
tailored feedback, and make better decisions regarding the exercise
progression (e.g., how much more time to give students to com-
plete their work). “So cannot give like infinite time for them to
finish the exam. So if we get, we get a point that even though like
no one solved that problem. They’re still thinking, we’ll just stop,
try to solve it” (P5). Furthermore, understanding students’ coding
progress can help participants get feedback on their own teaching
performance, and make plans for the remainder of the class. “it’s
important for like time allocation for the rest of the class” (P2). This
illustrates how effectively understanding students’ coding progress
benefits both instructors and students.

3.2 Challenge 1 (C1): Understanding students’
progress at different granularity

Participants reported their strategies for tracking students’ progress
both online and in person. For online settings, two participants used
‘breakout rooms’ (smaller virtual meetings that split students into
groups) to group students for coding exercises (P1, P2). While con-
ducting the exercises, teaching assistants will monitor the progress
of students by jumping between rooms and observing or conversing
with them. The instructors will then gather information regarding
the performance of the students from these teaching assistants. For
in-person settings, two participants stated that they would walk
around and monitor individual students’ computers or group dis-
cussions (P3, P4). Sometimes they ask students directly about their
understanding or check to see if they have any questions. However,
many students worry about what their classmates will think if they
ask questions or otherwise reveal that they do not understand the
material. Thus, our participants found that asking students directly
might not be helpful, as students “sometimes pretend to understand
to avoid looking ‘stupid’ in front of their peers” (P4). This indicates
a need for instructors to monitor students’ progress at various levels
(e.g., the individual level, the group level) during in-class activities
in an accurate manner.

3.3 Challenge 2 (C2): Inability to validate
students’ progress at scale

Our participants’ opinions were split when asked how accurate they
believe they are at understanding their students’ progress. One third
of the participants felt they had a good enough understanding of
their students’ progress, even if it was not necessarily very accurate
(P1). Other participants are reluctant to claim a good understanding
of students’ progress. For example, P2 expressed that they under-
stood “barely anything, I can only tell whether they’re finished
or not. [...] I cannot observe where they were stuck at.” In light of
this, instructors need a means of validating their understandings of
student progress at a class scale.

3.4 Challenge 3 (C3): Scaling tailored feedback
on progress is difficult

More than half of the respondents (4/6) said they sometimes did not
have enough time to provide feedback after seeing issues during
in-class exercises. “We actually don’t have enough time to make
sure everybody completes it” (P1). Typically, participants only had
time to provide feedback to a small number of students, which is not
scalable. Combining this finding with C2, our participants might
also be spending their time with the students who need feedback
the most. This indicates that instructors need a quick and efficient
means of providing feedback to students as they progress through
exercises. Further, it is important that they knowwho would benefit
from feedback the most.

4 VIZPROG
4.1 System Design Goals
Led by prior work and our interviews with instructors, we devel-
oped three design goals (DG1-DG3) to guide the design of VizProg

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 1: VizProg’s User Interface. There are three main view panels: the overall class progress 2D map view (1), a solution-
centered view (4), and a progress detailed view (5). On the 2D map view, each dot represents a student’s submission, each line
between two dots indicates the edit movement. The x-axis encodes the size of a code edit to be proportional to the distance (2),
and the y-axis represents different kinds of solutions for this exercise (3).

to help instructors monitor students’ in-class exercise progress in
real-time.

• DG1: Easily view students’ progress in real-time: The
system should provide students’ progress in real-time so that
instructors could observe students’ current progress. In the
context of in-class programming exercises, the closest we
can get to real-time feedback is by providing feedback as
students are typing.

• DG2: Easily compare the difference between code. Al-
though participants in our interviews did not raise this issue
specifically, we believe instructors would benefit from un-
derstanding students’ approaches for solving the problem.
This would allow instructors to see which solutions are com-
monly used, observe if any students solved the problem in an
unusual way, and if students are solving the problem using
the concepts they learned in class.

• DG3: Ability to inspect and navigate students’ progress
at different granularity: Instructors should be able to in-
spect students’ progress at the level of individuals and as
collective groups.

With these design goals in mind, we designed VizProg, a visu-
alization system that allows instructors to navigate the temporal
and structural evolution of students’ code, understand relationships
between code, and determine when to provide feedback to students.
In the following sections, we describe VizProg’s user interface and
the algorithms used to realize its features in detail.

4.2 VizProg’s User Interface
Figure 1 shows VizProg’s user interface which consists of three
main panels: the overall class progress 2Dmap view (1), a solution-
centered view (4), and a progress detailed view (5). As soon as
a user starts VizProg, the system continuously monitors each stu-
dent’s code editor at a keystroke level. On the 2D map view, it uses
a color-coded dot to indicate a student’s code status (correctness)
and a gray line to show how their status changes over time (Fig-
ure 1.6). As they progress through the coding exercise, the 2D map
updates in real-time to always reflect their current status. Instruc-
tors can interact with VizProg during the exercise (Figure 1.4, 5)
to track class-wide performance or individual progress. Addition-
ally, VizProg provides a lightweight feedback feature that enables
users to send text messages to individual students or to a group of
students (Fig. 2.d). Below, we describe the user interface design for
VizProg.

4.2.1 2DMap View: Overall Class Progress. To clearly convey when
progress is being made—when a student’s position changed (DG1),
VizProg depicts progress by left-to-right motion (Fig. 1.1), since
rightward movement is a common representation of progress (and
there might be a strong psychological basis for this in other do-
mains [10]). A gray line was used to connect two consecutive edits.
Only when a student submits their code will a dot appear on the 2D
map. Small gray dots represent historical code versions (meaning a
student submitted that code but has since moved on). Larger dots

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

Figure 2: A detailed view of VizProg’s user interface. Instructors can crop a region on the 2-D map to view solutions in that
area (a). Cropped regions appear as gray rectangles surrounded by dots (a), and the progress detailed view shows statistics
for the region (i, j, k, n). Correct solutions are displayed on the right of the map as blue dots with gray labels (c). When the
instructor clicks a student name (f), the 2-D map will highlight this student’s trajectory (b). The solution-centered view consists
of statistics related to the solution (e), a list of students’ IDs (f), and correct (g) and incorrect submissions (h) made by these
students. Instructors can search for a specific student (d). They can also send feedback to either an individual student or a group
of students (d).

represent students’ current ‘location’. Orange dots represent stu-
dents who have not yet found a correct solution (as determined by
the instructor’s unit tests). Blue dots represent students who have
found a correct solution (Fig. 1.6). We also used a gray rectangle to
indicate one type of solution (Fig. 1.3).

To ensure these updates are done in real-time, VizProg computes
locations over intermediate code edits rather than submissions.
These edits often include syntax errors, which makes many prior
techniques that rely on building Abstract Syntax Trees (ASTs) [14,
26] not feasible to apply. VizProg instead uses transformer-based
code vectorization [11], which can encode code semantics even
when there are syntax errors (as we will describe later). VizProg
is designed to make the generated space to continuous and propor-
tional to the size of code edits—the size of a code edit should be
proportional to the distance moved in 2-D space (Fig. 1.2). That
is, if the Euclidean distance between dot_a and dot_b is shorter
than that between dot_b and dot_c, then student_a and student_b
should have a more similar solution than that of student_b and
student_c. In addition, instructors should expect a similar coding
pattern when inspecting submissions that are close to each other.
In this manner, instructors can identify submissions that are far
from being correct.

To help instructors understand the variety of students’ solutions—
to identify which solutions might be common and which might be
abnormal (DG2), VizProg uses vertical space to represent different

kinds of solutions (Fig. 1.3). We applied the same clustering algo-
rithm that we used for individual submissions to display similar
solutions vertically closer to each other.

4.2.2 Solution-Centered View: Students End With A Solution. To
inspect the submissions from all the students who arrived at the
same solution (DG3), instructors can click a solution (Fig. 1.3) and
see the solution-centered view (Fig. 1.4). The list contains three
main sections: statistics related to the solution (Fig. 2.e), a list of IDs
of students who are close to (or found) this solution (Fig. 2.f), and a
list of submissions made by these students (Fig. 2.h). This view also
summarizes the number of correct and incorrect submissions that
are approaching this solution. The list of student IDs is color coded
to represent correctness. The instructor can click each student
ID to see the trajectory of the selected student’s submissions on
the 2D map view. The progress detailed view also displays all the
submission made by this student throughout the history of the
exercise (Fig. 1.5).

4.2.3 Progress Detailed View: A Selected Submission(s) View. To
allow users to navigate students’ progress at different granularities,
VizProg lets users examine the code progress of both groups and
individuals at the code level (DG3). For group progress, instructors
can crop a region on the 2D map to see the submissions only within
that region (Fig. 2.a). When a region is selected, the area on the map
will be a gray rectangle surrounding multiple dots. As long as the
selected region has at least one submission, the 2D map view will
hide all the dots outside of the region, and the progress detailed

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress CHI ’23, April 23–28, 2023, Hamburg, Germany

view will also display only the selected submission code (Fig. 1.5).
To assist users in identifying common misconceptions, VizProg
lists these submissions by error type frequency in descending order
(Fig. 2.i)1. Furthermore, VizProg color codes each submission by its
correctness, where orange indicates an incorrect submission and
gray indicates a correct submission (Fig. 2.n). VizProg also displays
the error message (Fig. 2.j) and highlights the line of code that
caused the error when there is an error in the submission (Fig. 2.k).
By resizing the overlay or dragging the overlay on the 2D map,
the user can view real-time updates on the progress detailed view
of the selected region (Fig. 2.a). For individual progress, users can
either search by student ID (Fig. 1.5), or click a student ID on the
solution-centered view (Fig. 1.4). This student’s progress will also
be represented by a trajectory line on the 2D map (Fig. 2.b). After
cropping a region or selecting submissions of a student, instructor
can use the lightweight feedback feature (Fig. 2.d) to send feedback
to the students that are selected.

4.2.4 VizProg visualization compared to alternatives. We compare
the visualization of VizProg to alternative tools in Table 1. We
choose OverCode [14] and Codeopticon [16] as alternatives, which
provide the state-of-the-art support for instructors to view students’
solutions in programming courses. The comparison is based on the
four aspects listed in Table 1. First, VizProg and Codeopticon pro-
vide dynamic visualizations that update in real-time for instructors
to monitor students’ progress, while OverCode analyzes students’
final solutions that are correct without regard to how they come
up with the solutions. Second, the visualization of VizProg and
OverCode is more concise than Codeopticon’s. VizProg encodes
students’ progress into a 2-D map, where instructors can view hun-
dreds of students’ progress in a single page without scrolling. By
displaying clusters of student solutions, OverCode saves space by
eliminating solutions with the same computation but different vari-
able names. In Codeopticon, each learner’s progress is summarized
in a tile, and the instructors interact with a dashboard consisting
of a list of tiles. As a result, Codeopticon is not suitable for large
programming courses. Third, VizProg and Codeopticon visualize
solutions from all students, while OverCode visualize only solutions
that can be executed without syntax errors. Fourth, VizProg sum-
marizes editing history using 2-D trajectories, whereas OverCode
and Codeopticon do not. OverCode displays only final submissions.
Codeopticon shows code edits as diffs, but does not summarize
editing history.

4.3 VizProg’s Algorithm
4.3.1 Naïve Approaches. The easiest approach would be to com-
pute a code vector (using CodeBERT [11] or similar tools) and
perform dimensionality reduction (using T-SNE [37] or similar
algorithms) to reduce each code sample to two dimensions that
can be displayed to instructors. However, this approach has two
important downsides. First, we found that small edits can result
in disproportionately large “jumps” in 2-D space by using vector
embeddings alone. Second, this approach does not represent data
points in a way that are necessarily intuitive; it is difficult to infer
whether a student is close to a solution from their position alone.

1Failing the unit tests for the problem also produces a runtime error.

Finally, depending on the approach for dimensionality reduction,
the lower-dimensional embeddings might need to be re-computed
frequently, which is too computationally expensive for real-time
updates.

4.3.2 Normalizing Code. We refer to a given piece of code as 𝑐 , a
string of characters. 𝑐𝑠,𝑡 refers to the code of student 𝑠 at time 𝑡 . We
will use is_correct(𝑐) ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} to represent if a solution 𝑐 is
correct (is_correct(𝑐) = 𝑡𝑟𝑢𝑒) or incorrect (is_correct(𝑐) = 𝑓 𝑎𝑙𝑠𝑒),
as determined by unit tests. We will use only_correct(𝐶), where
𝐶 is a set of code samples, to represent the subset of 𝐶 where
is_correct = 𝑡𝑟𝑢𝑒 . This means that: only_correct(𝐶) ⊆ 𝐶 .

We rely on two separate similarity metrics to determine how
to represent a student with code 𝑐 in VizProg: edit distance and
vector similarity (both described below). However, neither of these
similarity metrics account for differences that have no functional
meaning to the Python interpreter, such as differences in variable
names, comments, and spacing. For example, both similarity metrics
would determine that the following pieces of code are different, even
though they are functionally nearly identical (the only difference
being that the code sample on the right prints ‘Done!’):

my_variable = 10
my_dictionary = {}

for key, value in my_dictionary.items():
other_value = value + 1
print(key, other_value)

v = 10
d = {}

loop over all of the items in d
for k, v in d.items():

w = v + 1 # add 1 to the value
print(k, w)

print('Done!')

Prior work has accounted for this by computing the Abstract
Syntax Trees (ASTs) of both samples and modifying variable names
between code samples to match [14]. However, this approach relies
on building an AST, which is typically not possible in the presence
of syntax errors. As we discuss above, we designed VizProg to
work with code that has syntax errors. VizProg instead relies on
text-based normalization, which attempts to normalize code by
performing string-level operations, using regular expressions. Our
normalization performs the following:

• Removes extra spacing (newline characters, \n) in the code
• Removes code comments
• Detects variable names, as defined through assignment (e.g.,
varname = . . .) or implicit declaration (e.g., for varname
in . . . :).

• Removes calls to the print() function, as these are often
used by students to debug their code and are not typically
part of the problem definition

For example, VizProg’s normalization on the above code samples
would produce:

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

Table 1: We compared the visualization of VizProg to OverCode [14] and Codeopticon [16] based on four features. A “Dynamic”
visualization is one that updates in real-time. “Concise” means that the information can be read in a single page without having
to scroll. The term “Represent All” indicates whether it displays all the students in the class. “Summary History” refers to
whether history editing is summarized.

Features VizProg (this work) OverCode [14] Codeopticon [16]

Dynamic ✓ × ✓
Concise ✓ ✓ ×

Represent All ✓ × ✓
Summarize History ✓ × ×

v0 = 10
v1 = {}

for v2, v3 in v1.items():
v4 = v3 + 1

We refer to the normalized version of code 𝑐 as norm(𝑐). Our
normalization method has several drawbacks. First, it could result
in small changes producing large semantic changes. For example,
if a student 𝑠 as code at time 𝑡 𝑐𝑠,𝑡 and at time 𝑡 + 1, they add a
‘#’ to comment out some portion of code, the distance between
𝑛𝑜𝑟𝑚(𝑐𝑠,𝑡) and 𝑛𝑜𝑟𝑚(𝑐𝑠,𝑡+1) could be large. Second, there are still
several non-functional changes that it does not account for. For
example, changing the order of declaration of v0 and v1 in the above
code makes no functional difference to the code execution but is not
accounted for in our normalization technique. Still, we have found
that these issues have a small impact on our underlying algorithm.
One of the reasons we used short variable names like v0 is that
there is a relatively small cost for naming mistakes; for example,
the edit distance between ‘v0’ and ‘v5’ is small. However, future
work could further improve our normalization method to account
for these challenges.

We divide our discussion into our techniques for determining
students’ approach and their progress.

4.3.3 Representing Students’ Problem-Solving Approaches in VizProg.
We represent students’ approach on the y-axis and we use the vector
similarity between a students’ solution and existing solutions to
determine which approach they are using.
Vector Similarity The first distance metric that VizProg uses is
vector similarity. VizProg leverages CodeBERT [11], a pre-trained
transformer model capable of representing code, to convert code
into a vector (with 768 dimensions by default). vec(𝑐) ∈ R768 repre-
sents the vectorized version of code 𝑐 , as computed by CodeBERT.
We can compute the vector similarity of two different code samples
𝑐1 and 𝑐2 using the cosine similarity, after normalizing the code

samples (using the normalization technique described above):

vec_sim(𝑐1, 𝑐2) B
vec(norm(𝑐1)) · vec(norm(𝑐2))
| vec(norm(𝑐1)) | | vec(norm(𝑐2)) |

This produces a single number in the range [−1, 1] where higher
numbers represent higher similarity. In practice, this vector simi-
larity tends to be very close to 1 when comparing code samples for
the same exercise, even when comparing different approaches to
the same problem (empirically, in the range [0.96, 1.0]).
Building a Solution Space In order to build a Euclidean space for
code solutions to a given problem, VizProg first needs a pre-existing
set of prior solutions. In practice, these prior solutions might come
from previous class sessions, previous semesters, instructor-written
solutions, or could be collected after some subset of students has
completed the exercise. The source of prior solutions may affect
the solution space. Ideally, solution sets should be seeded from a
source that contains a diverse and comprehensive set of approaches
to solving the problem. We will discuss the problem of seeding
VizProg in more detail in section 4.3.6. We denote the set of prior
solutions as PAST_CODE = {𝑝1, 𝑝2, · · · , 𝑝𝑛𝑝𝑎𝑠𝑡 }, where there are
𝑛𝑝𝑎𝑠𝑡 prior code examples. Ideally, PAST_CODE should contain
several examples of correct solutions (is_correct(𝑝) = 𝑡𝑟𝑢𝑒 for
some 𝑝 ∈ PAST_CODE) but typically should contain a mixture of
correct and incorrect solutions.

We first build a matrix 𝑃 containing the vector representation of
every item 𝑝𝑛 in PAST_CODE (after normalizing the code):

𝑃 =

vec(norm(𝑝1)) vec(norm(𝑝2)) · · · vec(norm(𝑝𝑛𝑝𝑎𝑠𝑡))


∈ R𝑛𝑝𝑎𝑠𝑡×768

We then reduce 𝑃 from 768 rows to 1 row, first using Principal
Component Analysis (PCA) (to reduce from (𝑛𝑝𝑎𝑠𝑡 ×768) to (𝑛𝑝𝑎𝑠𝑡 ×
40)) and then T-SNE [37] (to reduce from (𝑛𝑝𝑎𝑠𝑡 × 40) to (𝑛𝑝𝑎𝑠𝑡 × 1)).
This reduces 𝑃 to a single vector, which we call ®𝑦 =T-SNE(PCA(𝑃 ,
40), 1) ∈ R𝑛𝑝𝑎𝑠𝑡 , because we will use it to compute the vertical (y)

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress CHI ’23, April 23–28, 2023, Hamburg, Germany

position of students’ code. ®𝑦𝑝 ∈ R denotes the position of prior
code sample 𝑝 . We go through this process in order to distinguish
between solutions 𝑝𝑖 and 𝑝 𝑗 that are very similar (®𝑦𝑝𝑖 ≈ ®𝑦𝑝 𝑗

) or
different (®𝑦𝑝𝑖 0 ®𝑦𝑝 𝑗

).
In addition, we use OverCode [14] to cluster similar correct solu-

tions from PAST_CODE more robustly. A cluster in OverCode [14]
is a set of correct solutions that perform the same computation. For
a given problem, we get distinct solution clusters, which we use to
label correct solutions along the y-axis in VizProg (Fig. 1.3).
Encoding Approach To determine which approach students are
attempting to use, we use the vector similarity between students’
solutions and prior solutions (all after normalizing the code). For
a student’s code 𝑐 we first select the 𝑛𝑣𝑒𝑐_𝑠𝑖𝑚 prior solutions in
PAST_CODE that are correct and most similar to 𝑐 and store the
result in NEAR_APPROACH. Formally, this is:

NEAR_APPROACH(𝑐) =

argmax
𝑃𝐶⊆only_correct(PAST_CODE), |𝑃𝐶 |=𝑛𝑣𝑒𝑐_𝑠𝑖𝑚

©­«
∑︁
𝑝∈𝑃𝐶

vec_sim(𝑐, 𝑝)ª®¬
In Python code, this could be computed as (assuming c is defined

as the current code sample):
NEAR_APPROACH = sorted(filter(is_correct, PAST_CODE),

key=lambda p: vec_sim(c, p))[𝑛𝑣𝑒𝑐_𝑠𝑖𝑚:]

This produces the subset of PAST_CODE with most semanti-
cally similar correct solutions. Smaller values of 𝑛𝑣𝑒𝑐_𝑠𝑖𝑚 produce
movement that better reflects the solution that a given code sample
is closest to but it can result in frequent vertical jumps as the clos-
est solution changes. Larger values of 𝑛𝑣𝑒𝑐_𝑠𝑖𝑚 produce movement
over time that is smoother but can be less accurate. VizProg uses
𝑛𝑣𝑒𝑐_𝑠𝑖𝑚 = 10.

We then compute the y position of code 𝑐 as theweighted average
of these similar solutions:

y_position(𝑐) B
∑︁

𝑛∈NEAR_APPROACH(𝑐)
®𝑦𝑛 · softmax(vec_sim(𝑐, 𝑝𝑛)3)

Where ®𝑦𝑛 ∈ R represents the y position of code 𝑛 (as computed
above). We cube the vector similarity to better differentiate between
several similarities that are close to 1, while preserving the sign of
the vector similarity.

4.3.4 Representing Students’ Progress in VizProg. The second dis-
tance metric that VizProg uses is edit distance. We represent stu-
dents’ progress on the x-axis and we use the edit distance to deter-
mine how far they are from a correct solution.
Computing Edit Distance We use the normalized Levenshtein
edit distance [22] (‘levenshtein(𝑎, 𝑏)’ denotes the distance between
𝑎 and 𝑏) to determine the edit distance between code samples:

edit_distance(𝑐1, 𝑐2) B
levenshtein(norm(𝑐1), norm(𝑐2))

max(len(norm(𝑐1)), len(norm(𝑐2)))
where len(𝑐) represents the number of characters in 𝑐 (a posi-
tive integer ∈ N) and max(𝑎, 𝑏) represents 𝑎 if 𝑎 ≥ 𝑏 and 𝑏 oth-
erwise. We normalize (divide by the maximum length code se-
quence) in order to avoid disproportionately long or short solu-
tions or submission from overly influencing the edit distance. Thus,
edit_distance(𝑐1, 𝑐2) always returns a positive number between

[0, 1] where 0 would mean 𝑐1 and 𝑐2 are functionally identical
(small edit distance).
Encoding Progress To determine how close students are to a
correct solution, we use the edit distance between students’ solu-
tions and prior solutions (all after normalizing the code). We first
find the 𝑛𝑒𝑑𝑖𝑡_𝑠𝑖𝑚 closest solutions by edit distance. VizProg uses
𝑛𝑒𝑑𝑖𝑡_𝑠𝑖𝑚 = 10. Formally:

NEAR_EDIT(𝑐) =

argmin
𝑃𝐶⊆only_correct(PAST_CODE), |𝑃𝐶 |=𝑛𝑒𝑑𝑖𝑡_𝑠𝑖𝑚

©­«
∑︁
𝑝∈𝑃𝐶

edit_distance(𝑐, 𝑝)ª®¬
In Python code, this could be computed as (assuming c is defined

as the current code sample):
NEAR_EDIT = sorted(filter(is_correct, PAST_CODE),

key=lambda p: edit_distance(c, p))[:𝑛𝑒𝑑𝑖𝑡_𝑠𝑖𝑚]

If solution 𝑐 is correct (passes the instructor’s unit tests) then
we assign its x position to 0. If it is not correct, we compute the x
position as the average edit distance for items in NEAR_EDIT:

x_position(𝑐) B
0, if 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (𝑐) = 𝑡𝑟𝑢𝑒

average
𝑝∈NEAR_EDIT(𝑐)

(−1 · edit_distance(𝑐, 𝑝)), otherwise

Where ‘average’ represents the arithmetic mean. Note that we
negate the edit distances, meaning x_position(𝑐) is always ≤ 0 and
larger numbers signify that 𝑐 is more similar to existing solutions.

4.3.5 Computational Efficiency and Displaying Progress in Real-
Time. The process of building a solution space is computationally
expensive but only needs to be done once before the instructor be-
gins an exercise. After ®𝑦 has been computed, we can use it to quickly
compute x_position(𝑐) and y_position(𝑐) for any student code 𝑐 at
little computational cost. Computing the position of 𝑐𝑠,𝑡 requires do-
ing a forward pass of 𝑐𝑠,𝑡 through the CodeBERT transformer, build-
ing NEAR_APPROACH(𝑐𝑠,𝑡), taking the weighted sum to compute
y_position, computing NEAR_EDIT(𝑐𝑠,𝑡), and taking the weighted
sum to compute x_position. Of these operations, the most compu-
tationally expensive is the forward pass through CodeBERT, which
executes almost instantly on any modern GPU.

4.3.6 Seeding VizProg with good sets of solutions. Instructor-written
solutions may only represent a subset of possible student solutions.
Using solution sets that lack diversity in code could make the 2-D
solution space less meaningful. Mapping instructor-written solu-
tions directly to vertical positions on the map could exclude the
diverse approaches that students take. It is likely the calculated
vertical positions of some student solutions are outside the solution
space. When visualizing these solutions on the 2-D map, the corre-
sponding dots will be displayed at the edges of the map. Therefore,
to build a solution space that would have meaningful results, users
should collect a solution set that has diverse code in it, such as
students’ solutions from previous semesters.

4.3.7 Limitations. There are several limitations of our approach.
First, it requires an existing repository of attempted solutions to
build a 2-D solution space. However, in future work, this solution

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

space could instead be built as users complete their code without re-
quiring any prior submissions. The primary challenge of doing this
is that it would require re-building the 𝑃 matrix and re-performing
the steps for dimensionality reduction as PAST_CODE grows. This
could be optimized by using incremental dimensionality reduc-
tion [12] rather than re-doing the process from scratch. This way,
most of the computational cost would determined by the amount
of new data, rather than the total size of PAST_CODE. We could
also perform these steps asynchronously to ensure that there is
no delay when rendering the visualization. We could also animate
changes to the 2D solution space to make it easier for instructors
to follow the visualization as it evolves. Second, VizProg relies on
code to assess students’ progress but progress is not necessarily
visible from the code alone. For example, students might write com-
mented pseudo-code to describe the algorithm they plan to use for a
problem before they start writing code. VizProg does not recognize
or represent this kind of progress in its visualization. If a student is
falling behind in VizProg, this is a sign that instructors should check
in on the student—not definitive evidence that they are struggling.
This means that VizProg can help instructors determine who to
help but still requires instructors to use their judgement.

5 USER STUDY
We conducted a within-subject study to evaluate the effectiveness
of VizProg for identifying students’ problems. In the study, we pro-
vided participants with a replay of pre-recorded authentic examples
of students solving a programming problem, and asked them to
answer quiz questions on students’ errors and progress. As our
‘baseline’ system, we used OverCode [14], with two augmentations
described in Section 5.1.4. We chose OverCode as a baseline because
it is a state-of-the-art tool, it is open-source, and it shared a similar
design goal with ours.

5.1 Method
5.1.1 Recruitment. Because the target users of VizProg are instruc-
tors, we primarily recruited participants with experience teaching
programming courses. We reached out senior students from the
[redacted for anonymity] and [redacted for anonymity] programs
at [redacted for anonymity]. In the screening session, participants
indicated their prior experience teaching Python. Qualified partici-
pants were experienced Python programmers, including teaching
assistants, tutors, and senior students who have taken advanced
Python programming courses before. We recruited 16 participants
(10 self-identified as male, 6 as female) from a local participant
pool. All 16 participants participated in the first session, and 15
participants participated in the second session. As Table 2 shows,
participants have experience in Python programming varies from 1
to more than 6 years. Among these participants, 14 had experience
teaching programming courses.

5.1.2 Live Simulation. In order to ensure the data we used in the
study were authentic, we used data collected from a large introduc-
tory programming course at [redacted for anonymity]. The course
size ranges from 130–190 students. Our data were collected from an
exercise within an interactive Python textbook used by the course.
The data represented students’ attempts at solving exercises on
their own time (rather than during time-limited class exercises)

Table 2: For the user study,we recruited 16 teaching assistants,
tutors, instructors, and senior students who are experienced
in Python programming.

PID Gender Teaching Exp. Python Prog. Exp.

P1 Female Tutor 2 Years
P2 Male Teaching Assistant 3 Years
P3 Male Teaching Assistant 1 Year
P4 Male Teaching Assistant 6+ Years
P5 Female Teaching Assistant 3 Years
P6 Female Teaching Assistant 3 Years
P7 Male Teaching Assistant 2 Years
P8 Male Teaching Assistant 1 Year
P9 Male Teaching Assistant 5 Years
P10 Female Teaching Assistant 4 Years
P11 Male Instructor 1 Year
P12 Male Teaching Assistant 2 Years
P13 Female Teaching Assistant 6 Years
P14 Male None 4 Years
P15 Female Teaching Assistant 3 Years
P16 Male None 2 Years

but they contained genuine examples of misunderstandings and
challenges that students faced when attempting the exercises. We
first collected students’ submissions for 100 programming exercises
from the course. We filtered the dataset by the number of students
who submitted solutions to the exercise, and the number of sub-
missions made per students. We ended up getting 69 programming
exercises which have more than 100 students’ submissions and
each student have more than 2 submissions in average. We chose
two programming exercises from the filtered dataset, one for each
session, that were roughly equivalent in terms of complexity:

Exercise 1 (E1): Provided is a string saved to the variable s1.
Create a dictionary named counts that contains each letter in s1
and the number of times it occurs.

Exercise 2 (E2): Create a list of numbers 0 through 40 and assign
this list to the variable numbers. Then, accumulate the total of the
list’s values and assign that sum to the variable sum1.

E1 had 627 Python code snippets from 109 students. E2 had
823 Python code snippets from 117 students. The solutions varied
from 2 lines to 20 lines of code. The submission time ranges from a
few minutes to several days. We trim the submission by setting a
time threshold and them normalized the time to a 15 minute time
window. We also checked each submission to ensure that it did
not contain any identifying information or present any privacy
concerns and anonymized appropriately2.

The data captured contained a snapshot of every submission
that students made (every time they ran the code). However, we
want our evaluation to work with keystroke-level data. To main-
tain the setting realism and ensure participants’ experience quality,
we generated synthetic keystroke-level data from the submissions
to simulate students’ typing activities. For each submission, we

2In our examples, there was no identifying information contained in code. In other
examples, students might use their given name as a variable name or output their
name in their code.

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress CHI ’23, April 23–28, 2023, Hamburg, Germany

compared it with the most recent previous submission, calculated
the string difference between them. For each addition and deletion
in the difference, we split it into character level editing activities.
With the keystroke-level data, participants observed students con-
sistently changing from one submission to the next submission
character by character, rather than sudden jumps in the solution
space.

Finally, we computed our visualization in a way that the visual-
ization of 𝑐𝑠,𝑡 could never depend on student 𝑠’s code after time 𝑡
(no forward dependencies). This means that the trajectory for each
student is what would be generated if that student’s solutions were
embedded in a space generated from the rest of the solutions, a
setup conceptually similar to cross-validation.

5.1.3 Study Setup. Our evaluation was within-subjects, where par-
ticipants joined two sessions—one with the baseline system and
one with VizProg. We counterbalanced the order of the systems
and tasks. We provided 15 minutes of training on how to use each
system. To ensure participants get enough practice of using the
system, we provided an example using scenario for users to explore
the user interface. In the practice example, participants watched
a replay of 20 students solving a programming problem and we
asked them to perform some exercises using the system.

After training, participants began the study. Participants watched
a replay of students solving a programming exercise for 15 minutes
(109 students for E1 and 117 students for E2). During the replay,
participants were asked to use the system to answer quiz questions
around students’ errors and progress. After the replay, participants
had 20 minutes to finish the quiz questions based on the final
results of the replay. After each session, participants were asked to
complete a survey regarding their experience of using the system.
After the second session (with the same procedure but a different
system), we conducted a reflective interview for comparing the
systems.

We conducted this study remotely using Zoom, and each session
lasted about 60 minutes. We recorded the screencast of them per-
forming the task, their answers to the survey, and the audio of their
think aloud process and their answers to our follow up interview.
We compensated each participant with a $25 USD Amazon Gift
Card for each session.

5.1.4 Baseline. We chose OverCode [14] as the baseline, which
clusters correct code submissions by computational results. Over-
Code is an effective tool for understanding submissions at scale.
However, OverCode [14] is not designed for live settings. To make
the comparison fairer (not biased in favor of VizProg),We developed
a Jupyter Lab extension that updated OverCode results in real-time.
Both the baseline system and VizProg are implemented as Jupyter
Lab extensions. During the study, participants used Jupyter Lab
to watch the replay. For participants who used OverCode [14], we
also provided the original OverCode user interface after the replay
finished.

5.1.5 Data Collection. In the screening session, we collected data
on participants’ teaching experience and Python programming ex-
perience. For each session, one member of the research team was
present. We created a list of code scheme of behaviors observed
from the study. For students’ answers to the quiz questions, one

member of the research team graded the correctness of the answers.
At the end of each session, we asked participants to fill out a survey
and compared the two session’s results. After the second session,
we conducted interviews with participants, where we asked par-
ticipants to compare the baseline system and VizProg. We worded
our questions in a way that tried to elicit more honest feedback by
not revealing which system was the ‘control’.

5.2 Results
The quiz was designed asmultiple-choice questions and open-ended
questions. We graded participants’ answers to each multiple-choice
question. One member of the research team created a list of cor-
rect answers to the quiz questions based on the replay. To grade
participants’ answers, we calculated

the number of matched answers
𝑚𝑎𝑥 (total number of correct answers, total number of selected answers)
to work out their grades for the quiz. We also coded the screen
recordings to analyse the time spent on each quiz question. We
used a two-tailed Welch’s t-test to determine significance for our
statistical analysis. For the open-ended questions in the quiz, we
analysed the screen recordings to understand how participants
interact with the tool to perform the tasks.

5.2.1 Participants understand students’ problems more accurately
using VizProg than the baseline. In the first session, we designed
the quiz questions as multiple-choice questions, which were more
direct and required users to find the information about specific
students. In the second session, we designed the quiz questions
to be more open-ended, which encouraged participants to explore
the system and interact with the whole dataset. For the multiple-
choice questions,We found that participants’ accuracywith VizProg
(𝜇 = 79.6%, 𝜎 = 0.1) is significantly higher than participants’ grade
with the baseline system (𝜇 = 51.4%, 𝜎 = 0.2, 𝑝 < 0.0001).

In the open-ended questions, we asked participants to use the
system to find common misunderstandings of the whole class. We
coded the misunderstandings participants found during the study.
Comparing to the list of existing misunderstandings generated by
the researcher, we calculated the number of valid misunderstand-
ings participants mentioned. As shown in Table 3, the valid misun-
derstandings participants found using VizProg (𝜇 = 4.5, 𝜎 = 1.5)
is significantly more than what they found using the baseline sys-
tem (𝜇 = 2.4, 𝜎 = 0.5, 𝑝 < 0.01). We listed the misunderstandings
participants found in two conditions in Table 3. In the control con-
dition, 4 out of 7 participants described misunderstandings in a
general way, using terms including “Name Error”, “Type Error” and
“Syntax Error”. In VizProg, 6 out of 8 participants described misun-
derstandings more specifically by pointing out the parts that made
the solution incorrect.

5.2.2 VizProg helps participants understand issues faster in live
settings than the baseline. To investigate how the two systems help
participants understand students’ problems in live settings, we
calculated 1) when participants started finding errors, and 2) how
much time they spent to find students’ errors.We found participants
using the baseline system started identifying errors significantly
later than participants using VizProg (𝑝 < 0.05). In the baseline
system, participants started finding errors 1069.9 seconds after

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

Table 3: Commonmisunderstandings participants found in the second session. The third column lists all the misunderstandings
per participant, and the fourth column calculates the total number of the misunderstandings the participant identified in the
study.

PID Condition Misunderstandings Count

P3 Baseline Use wrong variable in summation, Range excludes parameter “end” 2
P4 Baseline Name Error, Syntax Error, Use wrong variable in summation 3
P5 Baseline Use variable not defined, Do not know how to create a new list 2
P6 Baseline Type Error, Name Error, Use wrong variable in summation 3
P11 Baseline Type Error, Name Error 2
P14 Baseline Name Error, Do not know how to create a new list, Range excludes parameter

“end”
3

P15 Baseline Use variable not defined, Use wrong variable in summation 2
P1 VizProg Type Error, Syntax Error, Use variable not defined, Iterate on int object, Use

wrong variable in summation
5

P2 VizProg VizProg Iterate on int object, Use wrong variable in summation, General usage
of range, Return value of range

4

P7 VizProg Use wrong variable in summation, Use append method in an incorrect way,
Initialize range

3

P9 VizProg Type Error, Name Error, Key Error 3
P10 VizProg Use variable not defined, For loop on item not iterable, Use append method in

an incorrect way, Add up array and int, Use methods that do not exist, General
usage of range

6

P12 VizProg Use variable not defined, Use wrong variable in summation, Hard code, Incom-
plete expression, Did not add numbers in loop

5

P13 VizProg Use variable not defined, Iterate on int object, Use wrong variable in summation,
Use append method in an incorrect way, Add up array and int, Index on variable
that does not support indexing, Miss right bracket on print

7

P16 VizProg Use variable not defined, Do not know how to create a new list, Range excludes
parameter ’end’

3

the replay starts in average (𝜎 = 360.2). In VizProg, participants
started finding errors 500.1 seconds after the replay starts in average
(𝜎 = 468.2). As the replay lasted 15 minutes, this indicated that
with VizProg, people are able to understand students’ problems
synchronously with students working on the problem, while in
the baseline system, people tended to wait until students finished
the exercise. We did not find significant difference of how much
time they spent on finding errors between two conditions (VizProg
𝜇 = 261.5 seconds, baseline 𝜇 = 214.9 seconds, 𝑝 > 0.05)

5.3 System Usability and Study Insights
To better understand VizProg’s usability benefits or issues, we ran
a thematic analysis on the interview transcripts with our own
observations of participants’ behavior patterns from the video.

5.3.1 VizProg helps participants understand in live settings with less
context switching. As we showed in Section 5.2, participants can
understand students’ problems faster and more accurately using
VizProg than the baseline system. Based on our observation, we
found that using VizProg takes participants less context switch
to understand errors in live settings. In VizProg, instructors can
quickly understand errors of the whole classroom by watching the
2-D map instead of checking every students’ editing history. In
both sessions, we pointed participants to the most popular solution,

and asked participants to find out errors for that solution. In the
control condition, 8 participants needed to look at individual stu-
dents’ submissions to understand what were the misunderstandings
they had. 3 participants (P1, P6, P10) went through every student
in that group and spent more than 8 minutes looking at their sub-
missions. Given the large number of students in the class, 12 out of
15 participants randomly selected a few students from the group
and checked their history versions.

While in the treatment condition (with VizProg), 15 out of 16
participants used the 2D Euclidean map to interact with the whole
class’s submission. They brushed and selected an area on the map
and checked in on different error types on the right side of the tool.
Participants found VizProg helpful because similar submissions
are grouped in a small area (P2, P9, P10, P14, P16) and incorrect
submissions are grouped by error types(P1-3, P5, P7, P9-12, P14-16).
VizProg also enables participants to understand students’ problems
synchronously as students are working on the problem, while in the
control condition, participants need to wait until they finish(P3-6,
P14-15).

5.3.2 Visualizing progress on a 2D map takes participants less ef-
fort to validate students’ progress. In the second session, we asked
participants to find students who did not finish the programming
problem. Among these students, participants were asked to decide

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress CHI ’23, April 23–28, 2023, Hamburg, Germany

who were close to a correct solution and who needed more help. In
the control condition, participants looked at the history versions
of all students that did not have a correct solution, and then de-
cided whether they need further help. In the treatment condition,
participants checked the trajectory on the map for each student
that had an incorrect submission at the end. Participants found that
some students “were very close to the correct solutions on the map,
I think they only need to replace the variable name (P9-10, P15),”
while some other students “they were very far away from the map,
I think they don’t understand the concepts and would talk to them
(P9).” Participants also noticed that “they actually already reach
the correct solution but they went back changing to a different
approach, and never get it correct later, I don’t understand what’s
going on. (P12)”

“... The whole movement from left to right is basically telling
me the progress the student is making towards the right answer,
whereas in OverCode it was more like just set of blocks, and there
was no indication whether the final one is the right or not. Um!
It was just showing me the dotted saying that this is the current
portion of it. But as this was more easier, even just from the graph
aspect as well... (P1)”

5.3.3 VizProg enables users to quickly form a strategy to decide who
to give feedback to. In the second session, we asked participants to
first find students that need help, and then give feedback to these
students. We observed different behavior between two conditions
for giving feedback to the students.

In the control condition, participants looked at all the final sub-
missions and found there were 18 students who did not have a
correct solution when the simulation stopped. They decided that
all the 18 students need help. 2 out 7 participants went over every
student’s final submission and generated feedback based on the er-
rors in each submission. 5 participants randomly looked at some of
the students’ final submission and gave feedback to them, skipped
the other students.

In the treatment condition, participants first searched for dots
that were out of place in the 2D map. Participants then brushed
and selected areas on the map, and found that dots that are close
to each other had similar misconceptions, so they decided to give
the same feedback to them. Participants also found that dots on the
far left side of the map had submissions that were very far away
from a correct solution, while dots on the right side of the map had
submissions only needed a few edits to become a correct solution.
5 out of 8 participants decided to give more detailed feedback for
the dots on the far left side and talk to the students, and guide the
dots on the right side to a correct solution that is close on the map.

This indicated that in the control condition, participants lacked a
strategy in giving feedback and made decisions based on randomly
looking at students’ code. In the treatment condition, participants
quickly formed a strategy of using the map to generate feedback at
different granularity. Using VizProg, participants can use the visual
guidance on the map to give feedback at various levels (i.e., the
individual level, the group level) shortly.

5.3.4 Visualizing progress at scale can still be overwhelming. De-
spite of the benefits mentioned above, 4 participants (P4, P6, P12-
13) found the 2D map in VizProg overwhelming when all the dots
started to move.

“...I had to select a particular set of students. I had to drag and drop
on the graph, and I wasn’t entirely sure how that was going, plus
the the whole thing about the student moving from one solution to
another... (P4)”

Even in the control condition where we use conventional code
editors instead of a 2Dmap, participants still found it overwhelming
when many students started working on their code (P2, P9-10, P12,
P15).

Although we followed the rationale that students moving from
left to the right means that they are moving from incorrect solu-
tion to a correct solution, the map does not have explicit semantic
meaning for the position. P1 mentioned that “I have to brush and
select an area to look at the code.” P1 and P10 wished they “can see
more information from the map without extra interaction”. How-
ever, encoding more information on the map could lead to more
cognitive load for users to validate progress at scale. P6 and P13
said they prefer the baseline system because they can directly see
what’s going on in each student’s editor instead of remembering
what each dot means on the map.

6 DISCUSSION
6.1 VizProg’s Visualization is Intuitive for

Participants
As our findings show, VizProg helps participants to identify more
issues while spending less time analyzing students’ submissions.
These findings suggest that VizProg’s visualization and interactions
are intuitive compared to an enhanced version of OverCode, and
can help them identify students’ problems at scale. One participant
commented “...I would say initially, the whole movement from left
to right is basically telling me the progress the student is making
towards the right answer, whereas in Overcode it was more like
just a set of blocks, and there was no indication whether the final
one is the right or not...” (P1). This makes sense because the 2D
map can off load users’ effort of tracking students’ history activ-
ities to visual information such as the color and the position of
the dots. With the encoded information, users can more quickly
decide on which students to focus on, shaping their strategies on
analyzing students’ behaviors. Additionally, VizProg’s features—
most notably, the ability to brush to select a group of students and
examine progress at different levels (i.e., group level, individual
level)—allowed participants to analyze student behaviors at scale
with fewer context switches.

6.2 Trajectories in VizProg ease the reasoning
progress

VizProg offers an innovative way to visualize students’ coding
progress, which not only reduces instructor’s memory load, but
also provides a clear visual guide to reasoning about students’ be-
haviors. For instance, when students are working toward a final
solution, instructors can clearly see how a dot moves along a tra-
jectory and easily recall history versions by looking at trajectory’s
position. In a conventional timeline view, every time students make
a new submission, users need to look at previous versions to recall
what this student submitted before. Additionally, VizProg also helps
participants identify abnormal behaviors. For instance, participants

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

found that some students’ trajectories first reached the rightmost
side and then wander back to the left side of the map, which means
the students had correct submissions and then changed it to incor-
rect solutions. They reasoned that these students might be exploring
other approaches and did not need help. Participants also found
that students were wandering in the middle of the map and never
reached the right side of it during the whole exercise. Participants
then decided to talk to the student and give tailored feedback.

6.3 The Student Experience with VizProg
Beyond helping instructors, VizProg might also benefit to students
in several ways. Most directly, by helping instructors identify strug-
gling students and class-wide patterns, VizProg allows instructors to
adapt their instruction to students’ needs. For example, instructors
might discuss mistakes that they observed across many students,
give students tailored feedback, or create impromptu in-class ex-
ercises in response to what observe in VizProg. Future versions
of VizProg could incorporate additional student information3 that
might help instructors better understand if there might be class-
wide equity issues (e.g., if there are hidden barriers that prevent a
group of people from being able to meaningfully participate in class
exercises). Future versions of VizProg could also help to increase
student engagement and improve the effectiveness of peer learning.
Prior work found that in peer learning, students are grouped with-
out regard to their diverse backgrounds, solution approaches, and
levels of knowledge, which could lead to less meaningful and less
fruitful group discussions [38]. By encoding students’ progress into
a 2D map, VizProg can help instructors connect students with each
other strategically—for example, to form groups of students who
took different approaches or to pair students who are struggling
with peers that can help them. Third, Denny et al. [8] found that
students benefit from exposure to a wider diversity of solutions by
reviewing others’ code. With the assistance of VizProg, instructors
could easily guide students to diverse solutions from other students
without revealing their identities, thus giving students a deeper
understanding of how they can apply the concepts they learn in
class.

6.4 Ethical Implications and Privacy in VizProg
VizProg provides a code-centered view, where instructors can focus
on the code itself without sensitive information such as students’
names, genders, grades, or race. Given sensitive information such
as identities, instructor may stereotype some groups of students.
Inequities embedded in and around computing courses can be bar-
riers to participation and promote bias in class [24, 30]. Therefore,
the code-centered view in VizProg could potentially reduce bias and
help create a fairer environment for students. Future deployments
of VizProg should also give students the option to opt out of shar-
ing their data. The current VizProg interface allows instructors to
monitor students’ progress in real-time without regard to students’
consent to submit. This could harm students’ privacy and make
students less motivated to engage in class due to social pressure.
We can extend VizProg at the student side to give students the

3The design and presentation of this information would need to be considered carefully,
as including demographic information might have important drawbacks, as we discuss
in section 6.4.

option to turn monitoring mode on and off. In addition, students
should be aware of being monitored when working on program-
ming exercises in class. VizProg can be extended with an in-editor
notification to inform them that they are being passively monitored
by the instructor.

7 LIMITATIONS
Our user study has three primary limitations. First, although we
used authentic student data, we used a simulated setting rather
than a real classroom. As a result, we removed distractions and
psychological intensity for participants is reduced as compared
to a live classroom setting. Second, the feedback generated by in-
structors was not forwarded to actual students, which might make
participants less inclined to provide timely and nuanced feedback
during the study. Third, we evaluated on relatively short snippets
of code. More advanced programming courses might have exer-
cises that require writing dozens of lines of code across multiple
files, which could be more difficult to map and visualize or might
require visualizing individual components separately. Additionally,
there are limitations to the system. Several participants noted that
both the baseline map as well as the 2D Euclidean map in VizProg
can be overwhelming when many students are editing the code
simultaneously. Although our results showed that participants were
still able to find the information they needed quickly in VizProg,
conveying high volume of information is still challenging using a
2D visualization.

8 FUTUREWORK
Beyond what we created and demonstrated in this work, VizProg
has the potential to better capture and represent the process of
solving exercises at scale and for instructors to precisely analyze
behavior with lower cognitive effort. In this work, our target au-
diences are instructors of large introductory level programming
courses, who need more efficient and intuitive support to under-
stand students’ progress and misconceptions. But we believe that
our approach can be generalized to many contexts that need to
visualize progress changes at scale in real time. For example, the
high level idea of visualizing incremental changes on a 2D map can
be applied to monitoring students writing short-answer questions,
identifying the spread of viruses, or analyzing spatio-temporal traf-
fic flows [9].

In this work, VizProg updates the visualization upon each stu-
dent keystroke, where the dots move in real-time as students type.
We chose keystroke-level updates because it reveals more infor-
mation than the granularity of every time students execute their
code. In programming exercises, students have different coding
habits and execute code at varying frequencies. Some students run
code very often, while others run code only when they are ready
to submit it. Instructors may not be able to observe the full process
of how students develop a solution from scratch at the granularity
of each execution of code. Nevertheless, as participants reported
in the user studies, keystroke-level updates can be overwhelming
and distracting especially when a bunch of dots move at the same
time. Future work can explore different granularities of updates,
such as every time students run the code or every few minutes.
Additionally, we can explore various encoding models to reduce

VizProg: Identifying Misunderstandings By Visualizing Students’ Coding Progress CHI ’23, April 23–28, 2023, Hamburg, Germany

large spatial “jumps” between updates. We can also explore visual-
izing trajectories with color cues to help instructor better identify
behavior patterns, such as jumping between different approaches
and being stuck at a certain area.

9 CONCLUSION
In this work, we explored a design that allows instructors to vi-
sualize and understand students’ status in real-time for in-class
programming exercises. We introduce VizProg, a tool that allows
instructors to monitor and inspect large numbers of students’ cod-
ing submissions over time by presenting students on a 2D map.
In VizProg, students’ status is represented as a position that en-
codes similarities in students’ code, how students approach the
exercise, students’ progress—how close they are to a correct solu-
tion, and how students’ status changes over time. Our comparison
study showed that VizProg can help participants to discover more
than twice as many student problems, and find these problems
with less than half of the time and fewer interactions. Furthermore,
participants reported that VizProg provides richer and more com-
prehensive information for identifying important student behavior.
This work illustrates how we can further improve teaching by bet-
ter understanding students’ mental models and providing tailored
feedback at scale.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under DUE 1915515.

REFERENCES
[1] Douglas S Blank, David Bourgin, Alexander Brown, Matthias Bussonnier,

Jonathan Frederic, Brian Granger, Thomas L Griffiths, Jessica Hamrick, Kyle
Kelley, M Pacer, et al. 2019. nbgrader: A tool for creating and grading assign-
ments in the Jupyter Notebook. The Journal of Open Source Education 2, 11
(2019).

[2] Marcel Borowski, Johannes Zagermann, Clemens N Klokmose, Harald Reiterer,
and Roman Rädle. 2020. Exploring the Benefits and Barriers of Using Computa-
tional Notebooks for Collaborative Programming Assignments. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education. 468–474.

[3] Jeongmin Byun, Jungkook Park, and Alice Oh. 2021. Cocode: Providing So-
cial Presence with Co-learner Screen Sharing in Online Programming Classes.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (2021), 1–28.

[4] Charles H Chen and Philip J Guo. 2019. Improv: Teaching programming at scale
via live coding. In Proceedings of the Sixth (2019) ACM Conference on Learning@
Scale. 1–10.

[5] Lijia Chen, Pingping Chen, and Zhijian Lin. 2020. Artificial intelligence in
education: A review. Ieee Access 8 (2020), 75264–75278.

[6] Yan Chen, Walter S Lasecki, and Tao Dong. 2021. Towards supporting pro-
gramming education at scale via live streaming. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW3 (2021), 1–19.

[7] Albert T Corbett and Akshat Bhatnagar. 1997. Student modeling in the ACT
programming tutor: Adjusting a procedural learning model with declarative
knowledge. In User modeling. Springer, 243–254.

[8] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
Codewrite: supporting student-driven practice of java. In Proceedings of the 42nd
ACM technical symposium on Computer science education. 471–476.

[9] Somayeh Dodge and Evgeny Noi. 2021. Mapping trajectories and flows: facilitat-
ing a human-centered approach to movement data analytics. Cartography and
Geographic Information Science 48, 4 (2021), 353–375.

[10] Matthew L Egizii, James Denny, Kimberly A Neuendorf, Paul D Skalski, and
Rachel Campbell. 2012. Which way did he go? Directionality of film character
and camera movement and subsequent spectator interpretation. In International
Communication Association conference, Phoenix, AZ.

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[12] Takanori Fujiwara, Jia-Kai Chou, Shilpika Shilpika, Panpan Xu, Liu Ren, and
Kwan-Liu Ma. 2019. An incremental dimensionality reduction method for visual-
izing streaming multidimensional data. IEEE transactions on visualization and
computer graphics 26, 1 (2019), 418–428.

[13] Elena L Glassman, Lyla Fischer, Jeremy Scott, and Robert C Miller. 2015. Foobaz:
Variable name feedback for student code at scale. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology. 609–617.

[14] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing variation in student solutions to programming
problems at scale. ACM Transactions on Computer-Human Interaction (TOCHI)
22, 2 (2015), 1–35.

[15] Ashok K Goel and Lalith Polepeddi. 2018. Jill Watson: A virtual teaching assistant
for online education. In Learning engineering for online education. Routledge,
120–143.

[16] Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human tutoring for
computer programming. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology. 599–608.

[17] Philip J Guo, Jeffery White, and Renan Zanelatto. 2015. Codechella: Multi-user
program visualizations for real-time tutoring and collaborative learning. In 2015
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 79–87.

[18] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. 2017. Writing reusable code feedback at
scale with mixed-initiative program synthesis. In Proceedings of the Fourth (2017)
ACM Conference on Learning@ Scale. 89–98.

[19] JonathanHuang, Chris Piech, AndyNguyen, and Leonidas Guibas. 2013. Syntactic
and functional variability of a million code submissions in a machine learning
mooc. In AIED 2013 Workshops Proceedings Volume, Vol. 25. Citeseer.

[20] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. 2016.
Semi-supervised verified feedback generation. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
739–750.

[21] Juho Kim, Elena L Glassman, Andrés Monroy-Hernández, and Meredith Ringel
Morris. 2015. RIMES: Embedding interactive multimedia exercises in lecture
videos. In Proceedings of the 33rd annual ACM conference on human factors in
computing systems. 1535–1544.

[22] Vladimir I Levenshtein et al. 1966. Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady, Vol. 10. Soviet Union, 707–710.

[23] Julia M Markel and Philip J Guo. 2021. Inside the Mind of a CS Undergraduate
TA: A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs. In
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education.
502–508.

[24] Paola Medel and Vahab Pournaghshband. 2017. Eliminating gender bias in
computer science education materials. In Proceedings of the 2017 ACM SIGCSE
technical symposium on computer science education. 411–416.

[25] Joseph Bahman Moghadam, Rohan Roy Choudhury, HeZheng Yin, and Armando
Fox. 2015. AutoStyle: Toward coding style feedback at scale. In Proceedings of the
Second (2015) ACM Conference on Learning@ Scale. 261–266.

[26] Andy Nguyen, Christopher Piech, Jonathan Huang, and Leonidas Guibas. 2014.
Codewebs: scalable homework search for massive open online programming
courses. In Proceedings of the 23rd international conference on World wide web.
491–502.

[27] Thanaporn Patikorn and Neil T Heffernan. 2020. Effectiveness of crowd-sourcing
on-demand assistance from teachers in online learning platforms. In Proceedings
of the Seventh ACM Conference on Learning@ Scale. 115–124.

[28] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning program embeddings to propagate
feedback on student code. In International conference on machine Learning. PMLR,
1093–1102.

[29] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R Eagan, and Clemens N
Klokmose. 2017. Codestrates: Literate computing with webstrates. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
715–725.

[30] Kevin Robinson, Keyarash Jahanian, and Justin Reich. 2018. Using online practice
spaces to investigate challenges in enacting principles of equitable computer sci-
ence teaching. In Proceedings of the 49th ACM Technical Symposium on Computer
Science Education. 882–887.

[31] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. 2003. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. 76–85.

[32] Gursimran Singh, Shashank Srikant, and Varun Aggarwal. 2016. Question inde-
pendent grading using machine learning: The case of computer program grading.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 263–272.

[33] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In Proceed-
ings of the 34th ACM SIGPLAN conference on Programming language design and
implementation. 15–26.

CHI ’23, April 23–28, 2023, Hamburg, Germany Ashley Zhang, Yan Chen, and Steve Oney

[34] Ahmad Taherkhani, Ari Korhonen, and Lauri Malmi. 2012. Automatic recog-
nition of students’ sorting algorithm implementations in a data structures and
algorithms course. In Proceedings of the 12th Koli Calling International Conference
on Computing Education Research. 83–92.

[35] Ahmad Taherkhani and Lauri Malmi. 2013. Beacon-and Schema-Based Method
for Recognizing Algorithms from Students’ Source Code. Journal of Educational
Data Mining 5, 2 (2013), 69–101.

[36] Yuta Taniguchi, Tsubasa Minematsu, Fumiya Okubo, and Atsushi Shimada. 2022.
Visualizing Source-Code Evolution for Understanding Class-Wide Programming
Processes. Sustainability 14, 13 (2022), 8084.

[37] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[38] April Yi Wang, Yan Chen, John Joon Young Chung, Christopher Brooks, and Steve
Oney. 2021. PuzzleMe: Leveraging Peer Assessment for In-Class Programming
Exercises. Proceedings of the ACM on Human-Computer Interaction 5, CSCW2
(2021), 1–24.

[39] Daniel Weitekamp, Erik Harpstead, and Ken R Koedinger. 2020. An interaction
design for machine teaching to develop AI tutors. In Proceedings of the 2020 CHI
conference on human factors in computing systems. 1–11.

[40] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z
Gajos, Walter S Lasecki, and Neil Heffernan. 2016. Axis: Generating explanations
at scale with learnersourcing and machine learning. In Proceedings of the Third
(2016) ACM Conference on Learning@ Scale. 379–388.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming Education at Scale
	2.2 Code Visualization

	3 Needs and Challenges in in-class coding exercises
	3.1 Need 1 (N1): Need to see students' coding progress in real-time
	3.2 Challenge 1 (C1): Understanding students' progress at different granularity
	3.3 Challenge 2 (C2): Inability to validate students' progress at scale
	3.4 Challenge 3 (C3): Scaling tailored feedback on progress is difficult

	4 VizProg
	4.1 System Design Goals
	4.2 VizProg's User Interface
	4.3 VizProg's Algorithm

	5 User Study
	5.1 Method
	5.2 Results
	5.3 System Usability and Study Insights

	6 Discussion
	6.1 VizProg's Visualization is Intuitive for Participants
	6.2 Trajectories in VizProg ease the reasoning progress
	6.3 The Student Experience with VizProg
	6.4 Ethical Implications and Privacy in VizProg

	7 Limitations
	8 Future work
	9 Conclusion
	Acknowledgments
	References

