
CoCapture: Effectively Communicating UI Behaviors on Existing
Websites by Demonstrating and Remixing

Yan Chen
University of Michigan

Ann Arbor, Michigan, USA
yanchenm@umich.edu

Sang Won Lee
Virginia Tech

Blacksburg, Virginia, USA
sangwonlee@vt.edu

Steve Oney
University of Michigan

Ann Arbor, Michigan, USA
soney@umich.edu

Step2

Step3
Step4

Question Description

As the page scrolls down, i’d
like this element to behave
like this, and the background
div should also linearly
change its transparency level

Step1 Replay

Figure 1: The workflow of CoCapture. There are four steps of using CoCapture to communicate new UI behavior mockups
on an existing website. (Step 1) Users first capture existing interface behaviors (base scene) by interacting with the website
(scrolling), and CoCapture will automatically capture the Document Object Model (DOM) changes. (Step 2) In CoCapture’s
main panel, users can add new behaviors on top of the base scene by demonstration; that is, by directly manipulating any
elements (e.g., drag and drop the red element in the replay and see immediate changes). (Step 3) Users can remix (post-edit,
e.g., change duration) added behaviors to finalize the mockup. (Step 4) Users can refer to the DOM elements or added behaviors
in the textual description using hypertext.

ABSTRACT
User Interface (UI) mockups are commonly used as shared context
during interface development collaboration. In practice, UI designers
often use screenshots and sketches to create mockups of desired
UI behaviors for communication. However, in the later stages of
UI development, interfaces can be arbitrarily complex, making it
labor-intensive to sketch, and static screenshots are limited in the
types of interactive and dynamic behaviors they can express. We
introduce CoCapture, a system that allows designers to easily create
UI behavior mockups on existing web interfaces by demonstrating
and remixing, and to accurately describe their requests to helpers
by referencing the resulting mockups using hypertext. We showed
that participants could more accurately describe UI behaviors with
CoCapture than with existing sketch and communication tools
and that the resulting descriptions were clear and easy to follow.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445573

Our approach can help teams develop UIs efficiently by bridging
communication gaps with more accurate visual context.

KEYWORDS
Rapid UI prototyping; UI design communication
ACM Reference Format:
Yan Chen, Sang Won Lee, and Steve Oney. 2021. CoCapture: Effectively
Communicating UI Behaviors on Existing Websites by Demonstrating and
Remixing. In CHI Conference on Human Factors in Computing Systems (CHI
’21), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3411764.3445573

1 INTRODUCTION
Mockups are widely recognized in Human-Computer Interaction
(HCI) as invaluable tools for communicating and evaluating design
ideas. A mockup can help ground descriptions of UI functional-
ity and can serve as a “boundary object” that allows designers to
communicate with developers and other stakeholders. Mockups
are useful throughout the User Interface (UI) development lifecycle,
from exploration to refinement. However, most tools for mockup
creation are built for the earlier (exploratory) stages of UI develop-
ment.

There are several challenges when creating mockups as commu-
nication tools in the later stages of UI development—for example, to

https://doi.org/10.1145/3411764.3445573
https://doi.org/10.1145/3411764.3445573

CHI ’21, May 8–13, 2021, Yokohama, Japan

propose changes to a UI that already works or to describe a desired
behavior in a UI that contains an error. First, most tools for creating
mockups cannot import assets or behaviors from existing UIs, and
it can be tedious to replicate the intricate details of a working UI
in a mockup. Second, it can be difficult to communicate how an
existing UI should change because it is not easy to point out the dif-
ference between the existing behavior and the mockup’s behavior—
particularly when the change is nuanced or dynamic [43, 48, 51].
Third, mockups that propose changes to existing behaviors often
need to be mixed fidelity [40]—with high-fidelity representations
of existing components and low-fidelity renderings of proposed
changes—but few mockup tools support this. These limitations
led to our research question: How can we make communicating
about changes to existing UIs easier and more effective?

In this paper, we introduce CoCapture, an interactive system
that enables users, like UI designers, to easily create and then ac-
curately describe dynamic UI behavior mockups. These mockups
could represent changes the users want to propose or questions
they want to ask about an aspect of the existing UI. With CoCap-
ture, users first record the existing UI behavior by demonstrating
an example interaction on the existing UI (Fig. 1, Step 1). Build-
ing on this scene, users can further create dynamic behaviors via
demonstrations that manipulate DOM elements (Fig. 1, Step 2) and
remix these demonstrations as a first-class animation object (Fig. 1,
Step 3) through direct manipulation and low-fidelity sketching. To
help accurately specify the visual changes, users can write Natural
Language (NL) descriptions in CoCapture that contain hypertext
references to specific aspects of the mockups (e.g., specific DOM
elements, new animated effects) (Fig. 1, Step 4).

We conducted two within-subjects studies to evaluate the com-
munication effectiveness of multiple aspects of CoCapture: the
effort of creating visual context and the accuracy and clarity of the
description. In these studies, we asked “requester” participants to
describe a UI behavior and “helper” participants to read the descrip-
tions that requester participants generated. Our results show that
compared to traditional sketching and communication tools, the
requester participants using CoCapture spent less than a third of
the time on text writing, and their descriptions of UI behavior were
significantly more accurate. Additionally, the helper participants
reported that the descriptions in CoCapture were more accurate,
concrete, vivid, and easier to follow.

Thekey contribution of CoCapture is a novel interactivemethod
that combines the DOM element-based recording technique with a
demonstrate-remix-replay approach. This makes it easier to proto-
type on pre-built UIs and to describe user needs regarding dynamic
UI behaviors more accurately than is possible with existing ap-
proaches. With CoCapture, users can effortlessly explore different
possible designs, capture fleeting ideas, and communicate with oth-
ers about behavior ideas on existing interfaces. Specifically, our
contribution includes:

• A set of novel interaction designs and techniques that allow
users to capture, demonstrate, remix, and then describe the
UI behaviors they want to add or inquire about on an existing
UI via direct manipulation.

• CoCapture, a system that integrates all these techniques to
make communicating about changes to existing UIs easier
and more effective.

• Evidence showing that CoCapture can help designers more
easily create UI behavior descriptions that are easier to un-
derstand and follow compared to those created by existing
approaches.

2 RELATEDWORK
AsMyers et al. [43] explain, interactive behaviors define the “feel” of
a UI (as opposed to its “look”). Tools like VisBug [3] and Poirot [57]
help designers quickly change the look of their UIs. We focus on
communicating about the feel of the UI. This process often consists
of two tasks: making visual references and referring to the visual
references. In this section, we review related work and techniques
in these fields.

2.1 Creating UI Prototypes and Mockups
Systems like SILK [31] and DENIM [39] lower the overhead cost
of prototyping by recognizing designers’ sketches as interface el-
ements and implementing the idea of wireframing, respectively.
However, they do not support creating prototypes in later stages of
UI development.More recently, tools like Rewire [56] and Poirot [57]
have made prototyping new designs easier by enabling the users to
directly edit elements of existing examples. However, they do not
support interactive UI behavior editing, which is more difficult than
designing static layouts, as the behaviors are complex to demon-
strate and designers have access to limited tools [51]. Commercial
tools like Figma [2] and Adobe XD [1] can ease the creation of
interactive behaviors but assume their users would reconstruct
existing interfaces from scratch, making it hard to scale. Other
layout-capturing tools such as WebToLayers1 and PageLayers2 au-
tomatically convert websites to Photoshop documents. However,
they only support static layouts; they do not preserve the DOM
structure, element constraints, or dynamic UI behaviors. Crowd-
powered systems like Apparition [32] and SketchExpress [34] allow
designers or even non-experts to more rapidly create or reconstruct
a prototype than they could with existing tools, but these systems
also fall short of recreating particularly complex interfaces.

Unlike these systems, CoCapture helps create interactive mock-
ups in the later stages of UI development, proposing changes to a
UI that already works or describing desired behaviors in a UI that
contains an error. These UIs can be arbitrarily complex, requiring
effort to create mockups that replicate existing functionality. Com-
pared to layout-capturing tools, CoCapture also captures the DOM
structure, allowing designers to easily add behavior mockups on
existing interfaces. This gives them the ability to immediately en-
vision the new behaviors and complete the process of creating a
mockup as a reference.

2.2 Visual References as Shared Context in
Communication

Many prior studies have reported that people often include screen-
shots, drawings, or sketches as visual context in communication.
1https://neededapps.com/webtolayers/
2https://www.pagelayers.com/

https://neededapps.com/webtolayers/
https://www.pagelayers.com/

CoCapture CHI ’21, May 8–13, 2021, Yokohama, Japan

These studies have explored questions of how designers commu-
nicate desired interactive behaviors to engineers [43, 51], how In-
foVis novices describe data visualization [20, 42], how program-
ming novices explain PC game behaviors to the computer [49], and
how end-user developers communicate about application exten-
sions with other developers [17]. However, they also consistently
found participants’ responses to be vague, ambiguous, or imprecise,
suggesting future systems should provide a tight feedback loop in
which users see immediate results to refine ambiguous descriptions.

Creating visual references can help ground communicationwhen
discussing visual design and providing feedback. In a face-to-face or
video conference setting, we can use pointing gestures in shared vi-
sual spaces to make references to visual information that is difficult
to express withwords. Muchwork has studiedmethods for referring
to visual content in communication, including text annotation [44],
remote gestures [19, 27, 28], and awareness widgets [13, 18] in
different computer-supported cooperative work contexts such as
authoring [41, 55, 60–62] and groupware [23, 24]. They have shown
that referring methods can facilitate mutual understanding by re-
ducing verbal effort and its associated complexity [22]. The ability
to leverage non-verbal communication is an important factor in
decreasing the effort of writing clear messages [16].

In programming communication, systems like chat.codes [45]
and Callisto [59] use deictic code pointing techniques to facilitate
creating code references and connections with text descriptions
that help developers discuss code. Codeon [12] is an in-IDE support
environment to help requesters and helpers exchange code context
easily. MarmalAid [15] allows users to start a real-time conversa-
tion on a geometric location in a 3D workspace. Building on these
approaches, we aim to address the problem of referring to dynamic
and interactive visual references for more effective communication.

2.3 Record, Replay, and Manipulate Existing
Interfaces

A core technical part of CoCapture’s system is the record and replay
(R&R) technique, which is used to record an existing behavior once
and then replay it repeatedly and automatically without user in-
teraction. Prior work has used this technique for various purposes.
Systems such as Scry [7], Telescope [26], Unravel [25], Doppio [14],
FireCrystal [47], and WebCrystal [9] use this approach to help peo-
ple understand existing UI behaviors. Systems like Chronicle [21],
Timelapse [6], and MobiPlay [53] record meta-data (e.g., operations,
code editing) and allow users to easily capture the rich data of
application behaviors. Our techniques enable designers to not only
record arbitrary web interface behaviors, but also to easily add new
designs on top.

To ease the creation of new behaviors, FrameWire [38] decreased
the effort of communicating new interactive designs by automati-
cally extracting interaction flow from paper prototype video record-
ings. Many other recording augmentation systems have been de-
veloped to help effectively prototype new digital content, such as
Montage [35] and Augmented Reality (AR) experiences like Pro-
ton [36], or to provide video feedback, like VidCrit [52]. Park et
al. developed a technique that enables users to edit text content
in a text-based recording while preserving the recording’s overall
consistency [50]. CoCapture also allows its users to easily add new

behaviors over recordings, but instead of simply supporting over-
laid visual annotations or user comments anchored to specific parts
of the content, it allows users to edit existing elements through
direct manipulation.

The field of Programming by Demonstration (PbD) has used sim-
ilar techniques to augment users’ ability to perform tasks with
which they often lack expertise. Rousillon [11] and Sugilite [37] al-
low their users to record and edit the operations via domain-specific
languages. CoCapture also supports a set of mockup creation opera-
tions that allow designers or even novice users to edit the recording
and simulate the desired interactive behaviors.

3 NEEDFINDING STUDIES
We conducted two studies to better understand designers’ chal-
lenges and needs when communicating about UI behaviors.

3.1 Stack Overflow Analysis
Wefirst conducted an analysis to identify the categories of questions
related to UI behaviors that were most frequently asked on Stack
Overflow (SO), a well-established Q&A platform in the program-
ming community. We analyzed the 200 most viewed questions that
were tagged with JavaScript (JS) and CSS. We used these two tags
because they are primarily used for manipulating UI elements (JS)
and presenting them (CSS). We read through all the posts, counted
other included tags, and documented the use of visual references in
the posts. We found that 41 posts (20.5%) included tags that were
CSS properties (e.g., height, position) or related to interface element
changes (e.g., CSS-transition, sticky menus). We also examined the
visual references included in each post and found that 34 posts (17%)
included links to a live example of their problem3, 18 posts (9%)
included screenshots, and 5 posts (2.5%) included sketches. This
helped us determine which of the most frequently asked question
categories also required visual information. We used this informa-
tion to guide our system and study design.

3.2 Needs and Challenges
Our second study examined how well existing tools can support
communication about common UI behavior issues on existing web
interfaces. We recruited eight participants with at least one year of
UI design and development experience (3 female, 5 male) from the
first author’s university. Among them, half acted as requesters to
ask three questions using Scrimba [5], a state-of-the-art tool that
allows its users to simulate in-person communication by recording
voice narration and editor activity (e.g., typing, highlighting). The
three questions represent the most popular categories we found
in our Stack Overflow analysis: a responsive UI task4, a platform
game5, and an animated effect applied to an object6. The remaining
participants acted as helpers, reviewing the clarity of the requesters’
three questions by comparing their understanding of the requests
to the ground-truth desired output (presented as a video demon-
stration). All helpers were teaching assistants for a UI development
course at the first author’s university. After the tasks, we held a

3https://stackoverflow.com/a/{24414642|5445491|17722497}
4https://tinyurl.com/ydev4uwr
5https://github.com/starzonmyarmz/js13k-2018
6https://semantic-ui.com/modules/transition.html

https://stackoverflow.com/a/{24414642|5445491|17722497}
https://tinyurl.com/ydev4uwr
https://github.com/starzonmyarmz/js13k-2018
https://semantic-ui.com/modules/transition.html

CHI ’21, May 8–13, 2021, Yokohama, Japan

follow-up interview with all participants in order to help inform
the design of CoCapture.

Instead of describing the desired change in the interactive behav-
ior in text, which would result in biases [49], we gave requesters
the code (i.e., HTML, JS, CSS), the existing UI, and the desired UI for
each task. We also used visual annotation (e.g., cursor pointing) and
determiners (e.g., “this part”) to point out the differences between
the existing and desired UIs without offering specific descriptions.
Requesters could access this information throughout the session
and were not allowed to use any materials from the desired UI
artifact (e.g., no screenshot of the desired UI). This simulates the
scenario where a UI designer knows what the desired change is but
has no access to the new behavior.

The lead author conducted all of the studies in her research
lab. Each session lasted approximately 45 minutes, and sessions
were recorded and transcribed. The lead author went through the
transcripts and coded them using an open coding approach [10],
which included discussions with the research team. We report our
findings for requesters [R] and helpers [H] below.

Challenge 1 (C1): [R] Visual context is necessary but diffi-
cult to describe on existing interfaces.When asked about their
experience describing the UI questions on the given artifacts, all
requesters noted the challenge of providing visual information in
the request: “I wish there was an easier way to describe the differ-
ence between what’s there [existing UI] and what’s needed to be there
[desired UI]” (R1). When asked about their experience with UI be-
havior questions on Stack Overflow, requesters also expressed the
necessity of including the contextual information of visual changes
as part of the requests. “I’d prefer to create a video to demonstrate
the whole changing process” (R4). When asked about their needs
when creating the requests, R1 suggested having a better way of
organizing the information. This indicates the importance of pro-
viding visual information changes in a request, as well as a need
for easier methods of adding visual information changes to existing
interfaces.

Challenge 2 (C2): [H] NL descriptions may lack the neces-
sary details. Four helpers commented that some of the questions
were “too vague” (H1), “broad” (H2, H3), “unclear” (H4), or “hard
to understand” (H2, H3). For example, H2 said, “I don’t understand
when they say their HTML pages [are] not responsive, because it is
responding to the way they’re resizing.” To respond to these “vague”
questions, two helpers said they had to provide suggestions based
on their best understanding of the questions (H1, H2), while the
other two would prefer to follow up with clarifying questions to
make the expectations more explicit (H3, H4). This suggests that
the current tools might not provide sufficient support for beginners
to easily phrase their questions and receive the correct assistance.

Challenge 3 (C3): [R, H] Voice-based video requests can
be tedious to make and navigate. Both requesters and helpers
reported that they were more used to tools with text (e.g., email and
text-heavy images like annotated screenshots) for asynchronous
communication, and they found voice-based requests difficult to
use. Requesters felt creating voice annotation was “time-consuming
for people who have to think long [about] what they have to say” (R1),
“hard to synchronize everything together” (R2), and “hard to edit later
and so that kinda make me more nervous to do” (R3). The other
requester (R4) felt voice recordings were an easy way to annotate

visual requests. Helpers commented that the voice requests were
“helpful” (H2), though they wish the recordings could be “more
slowed down” (H1) and “easier to find information like searching
through text” (H3). This feedback suggests that text-based requests
can be more convenient for requesters to make and can enable
helpers to find information more easily. However, the difficulty
in referring to dynamic behaviors and visual elements remains a
challenge. We aim to address this in our system.

Need (N): [H] Wish to see the existing and desired behav-
iors. When asked about the necessary information for understand-
ing a UI behavior question, all helpers chose the existing output and
desired output. Half of the helpers felt the related code would not be
necessary, as “there’re so many ways of doing something. As long as
they’re able to understand what the results should be, I can figure out
what the code is supposed to do” (H2). This indicates that both the
existing and desired behaviors should be included in a UI behavior
question. After being shown the ground truth of the desired behav-
iors, three helpers found that they had misunderstood at least one
question, noting that “I thought it was going to be this whole block
that was moving together” (H2) or that “I was actually thinking that
this bar here would stay on top above this” (H3). Helpers suggested
creating a video that scrolled through all of the different sketches
and screenshots, a concept that aligns with suggestions from prior
work [51]. These results indicated the need for a tool that highlights
the moving elements that respond to the UI behaviors.

3.3 Design Goals
Driven by the findings (C1–C3, N), we came up with three goals
(DG1–DG3) to guide us in designing CoCapture so that requesters
can easily prototype behaviors on pre-built interfaces and effec-
tively communicate about the new behaviors with helpers.

• DG1: Quick to create visual changes (C1, N): Requesters
need to quickly and accurately create their desired UI mock-
ups on existing interfaces and include both the existing and
desired behaviors for communication.

• DG2: Accurate to describe behavioral information (C2,
N): Requesters need to easily and accurately describe the
desired behaviors with the created mockups, not just the
desired appearance.

• DG3: Easy and clear to understand the needs (C2, C3):
Helpers need to easily and clearly understand the existing
and desired UI behaviors, with each behavior being specified
accurately.

4 COCAPTURE DESIGN AND
IMPLEMENTATION

Guided by the design goals, we developed CoCapture, a Chrome
extension that allows users to easily create mockups on an exist-
ing website through direct manipulation and to reference pieces
of the resulting mockups in their description using hypertext. In
this section, we first illustrate the experience of using CoCapture
with a sample usage scenario that embodies many of the use cases
identified in our formative studies. We then detail the design of
CoCapture.

CoCapture CHI ’21, May 8–13, 2021, Yokohama, Japan

 B A

 C

 D

 E

 F
 b1

a. Replay the mockup
b. Replay the base scene

 b2

Figure 2: CoCapture’s main panel (after Step 1 in Fig. 1). To create an animation, a user first clicks on an existing DOM element
(b1) (can selectmultiple byholding Shiftkey down) from the base scene (B). Once recording starts (A), the user can demonstrate
the desired behaviors by changing the elements’ properties (C) or directly dragging them in the base scene. Once the recording
is finished, the demonstrationwill be appended to theAnimation List (D) with a set ofmeta operations, such as adjust start/end
time, replay, and preview. The user can write their question (E) and refer to the animations or DOM elements in the scene by
selecting portions of text and clicking the ‘Link to a Reference’ button. Text with references, or hypertext, is in bluewith a click
affordance displaying the relevant context (i.e., highlight elements (b1), replay animations (D)). The process of the animation
(inbetweening) will also be displayed (F). The user can also filter the Animation List (D) to only display the animations related
to the selected elements.

4.1 The CoCapture User Experience
Jerry, a junior professional web interface designer, is in the middle
of prototyping a website that has most of its content ready. Now he
wants to extend the website by adding some interactive behaviors
to respond to a user scrolling event (e.g., the user profile picture
fades out down7). He decides to use CoCapture to create a mockup
of his vision and then ask his peers for feedback. Jerry first clicks
the Chrome extension on his website to start CoCapture (Fig. 2) and
clicks the “Record Web Behavior” button (Fig. 2.A left) to record a
demonstration of him scrolling through the original website as if he
were the user. Once finished, he clicks the play button (Fig. 2.b2a)
to watch the replay of his demonstration (Fig. 2.B), verifying all the
relevant context is captured.

7A similar fade-out example: https://html5up.net/massively

To create a mockup where the profile picture fades out down
with the appropriate speed and distance as a user scrolls down the
whole page (Fig. 2.b1), Jerry first moves his cursor over the image
until he sees a dotted border highlight the right element (e.g., not
the element that wraps the image). After selecting the element, Jerry
presses the “Record Element Behavior” button (Fig. 2.A) and directly
demonstrates the desired fading behavior. This behavior requires
remixing two independent animations: the element moves down
until the bottom half of the image is covered by the gray banner, and
the transparency level of the element continuously decreases to half
of its original value. Jerry creates these two animations by direct
manipulation, seeing the changes immediately: he drags the element
to the desired position (Fig. 2.b1) and adjusts the “Transparency
level” slider value to half of its original value (Fig. 2.C).

https://html5up.net/massively

CHI ’21, May 8–13, 2021, Yokohama, Japan

The created animations are added to the “Animation List” (Fig. 2.D).
Each animation has a set of operators, including an interactive range
slider that represents the start/end time, replay, clone, delete, and
preview. To set the recorded fading behavior to occur between the
time when a user starts scrolling and the header moves out of the
view, Jerry scrubs the replay play bar to find these two moments
from the base scene recording and then adjusts the animation sliders
to align with them.

After Jerry finishes creating the mockup, he adds a text descrip-
tion to his request, which includes references to the relevant DOM
elements and animations (Fig. 2.E). Because Jerry knows he can use
hypertext to link his description to the relevant artifacts, he writes
a very short message and uses pronouns such as “this element” or
“behave like this.” Jerry selects part of his description and clicks
“Link to a Reference” to select the DOM element or animation that
he wants to reference. To ensure the animation matches what he
has written in the text, Jerry clicks the hypertext highlighted in
blue and reviews all of the animation replays—both in the scene
(Fig. 2.B) and in the “Inbetweening” panel (Fig. 2.F).

4.2 Design and Implementation
We describe the technical details of CoCapture in this section.

4.2.1 Step 1: Demonstrating Existing Behaviors. To quickly create
visual context on top of an existing interface (DG1), CoCapture
allows users to capture a behavior by demonstrating it on an ex-
isting website. This saves significant time and effort in creating a
shared visual context—which we will call a base scene—as users
can import arbitrarily complex behaviors from any website rather
than needing to create animated visuals from scratch. When users
demonstrate existing behaviors on a website, CoCapture captures
all DOM changes (e.g., node creation, deletion) and events (e.g.,
mouse movement, browser window size changes). To capture this
data, we rely on an open-source library8, which in turn uses Muta-
tionObservers to track [4] and store the timeline of DOM changes.
The serialized DOM change sequence can be replayed on CoCap-
ture’s main panel as if it was a screencast (Fig. 2.B). However, unlike
a screencast (pixel-based), each frame in the replay still preserves
the DOM tree structure from the original interface.

4.2.2 Step 2: Animating the Desired Behaviors. CoCapture includes
a prototyping environment that allows users to demonstrate their
desired UI behaviors as animations (DG2). Users can modify the
replay of the existing behavior by directly manipulating the UI
elements in the base scene, recording their changes, and augment-
ing the base scene with these demonstrations. The reconstructed
DOM recording (i.e., the base scene) also preserves the UI states
at each time point of the demonstration (e.g., DOM structure). It
accomplishes this with the following steps and techniques.
(Manipulating and adding UI element(s) in the base scene). CoCap-
ture transforms all the UI elements from the original website into
selectable elements that a user can directly manipulate. Users can
select one or more DOM elements in the scene by holding the Shift
key down. As users hover over each element, CoCapture highlights
the element with a red dashed border to ease the selection process
(similar to the element selection feature in the Chrome Developer

8http://rrweb.io

Tool). CoCapture also allows users to create low-fidelity sketches
(which it stores as Scalable Vector Graphics (SVG) drawings), import
sketches into the scene, and manipulate them like any other DOM
element (Fig. 2.C).
(Record a desired behavior as a behavior mockup). CoCapture uses
the MutationObserver API to record the attribute changes (e.g., style
changes) of the selected elements. Once they have started record-
ing, users can edit selected elements’ CSS properties by adjusting
the sliders in the relevant side panel tab (Fig. 2.C). They can also
perform drag-and-drop operations on any DOM elements to demon-
strate their new motion and position. All the manipulations will
be represented immediately in the base scene. CoCapture auto-
matically records and stores a continuous series of time-stamped
snapshots, which will later be replayed as an animation.

CoCapture supports the modification of 10 commonly used el-
ement attribute types, including height, width, font size, rotation,
transparency level, color, hide (delete), visible, x, and y. Future work
can build on this list by connecting with Chrome Developer Tools
or by extracting the existing properties of each element [57].

4.2.3 Step 3: Remixing Added Animations. To help users accurately
express and see the desired and existing behavioral information
(N, DG2), CoCapture provides a set of features that allow users
to remix, review, and fine-tune animations. The design of these
features is inspired by the concept of “remixing,” an idea widely
used in animation creation [34] and music editing [33]. First, each
animation is listed below the base scene recording, with the ranges
aligning with the exact moments the animation was started or
stopped with respect to the base scene recording timeline (Fig. 2.D).
Second, the set of operations for each animation (the green but-
tons in Fig. 3) facilitates creation and adjustment of the animation.
Users can replay the base scene (Fig. 2.b2.b), the remixed behaviors
(Fig. 2.b2.a), and each animation solo (Fig. 3 “Replay” button) at any
time. We describe the details of each feature below (all within the
“Animation List” section in Fig. 2.D).
(Time and duration adjustment play bar) The interactive range slider
for each animation represents the start and end times of the ani-
mation relative to the original recording. A user can move the two
handles of the range slider to modify the start time and end time.
Because the scene’s play bar and the animations’ range sliders are
visually stacked and follow the same timescale, users can easily
remix an animation to align with others in the list. As the range
changes, the duration of the animation also changes linearly.
(Replaying and deleting individual animations) CoCapture allows
users to replay and delete each animation by clicking the appropri-
ate button below the range slider. When replaying, the elements
that were selected when demonstrated will be highlighted with a
solid red border (Fig. 2.b1). CoCapture replays an animation in two
steps: it first resets the scene to the state at the start time of the
animation, and then it replays the demonstrated changes to the
elements. Resetting the scene is necessary because certain behav-
iors are state-dependent (i.e., a banner only appears when the page
scrolls to the bottom). Being able to replay individual animations
from the correct state helps users precisely envision and reason
about further steps. In addition, demonstrated animations can be
deleted individually from the scene. This is helpful if the designer

http://rrweb.io

CoCapture CHI ’21, May 8–13, 2021, Yokohama, Japan

animation starts animation ends preview demo

visual tag

Figure 3: For each created animation, CoCapture provides
information that prompts users about the actions they can
take, including creating visual tags and replaying or preview-
ing the animation. It also supports a set of operations to
make the creation process easier and more accurate, includ-
ing a range slider for time adjustment, as well as options for
cloning, changing, or deleting an element.

animation list 1

 2
 3.1

 3.2

the scene

Figure 4: There are three steps to create hypertext: (1) se-
lect portions of the text in the question description, (2) click
“Link to a Reference,” and either (3.1) select an element in
the scene or (3.2) check an animation. The hypertext will be
highlighted afterwards.

notices a mistake in the demonstrated behavior and simply wants
to redo it.
(Animations at a glance with visual tag and preview) To remind users
of the animation type (i.e., edited element properties), CoCapture
uses icon-like visual tags and a live preview for each animation. We
use six different tags to represent the 10 different attribute changes.
From top to bottom, Fig. 2.D illustrates that elements change in color
(transparency level, color) and position (x, y, rotation) , and
can be removed from the scene . CoCapture also includes resize
(height, width) , font size , and visibility (sketch is added to
the scene) icons. The preview feature (Fig. 3 “Preview” but-
ton and preview demo) is also designed to help make animations
more glanceable and easier to understand by showing a simpli-
fied version of the actual animation (N, DG3). Upon clicking the
“Preview” button, the preview demo will play a simplified version
of a looping animation where each hollow square represents one
relevant DOM element. This simplified animation preview design
is inspired by Tufte’s minimalism theory for effective information
visualization [58]. For example, the first preview demo in Fig. 2.D
is currently playing the change in the transparency level of the
background element.
(Cloning and changing element) CoCapture stores the animated
elements and their mutation arrays independently. This allows it
to apply the same set of mutations to different elements. Users
can easily create one animation and use the “Clone” or “Change
Element” buttons to repurpose it so that the behavior of one element
can be adapted to others.
(Filtering the animation) To help explore the mockup details, users
can click to select an element (e.g., profile picture) in the base scene
and click the “Filter” button (Fig. 2.D) to view only those animations
that were created on this element.

4.2.4 Step 4: Communication with Visual References (Hypertext). To
effectively communicate about the interface behaviors (DG2, DG3),
CoCapture provides a lightweight text box (Fig. 2.E, suggested in the
needfinding results) where users can easily and accurately describe
and review UI behaviors with hypertext, a feature that links text
description to the visual information. Similar to the hyperlink fea-
ture in common text editors, a user may select portions of the text,

click the “Link to a Reference” button, and select any DOM elements
in the base scene or created animations to link to the text (Fig. 4).
Upon clicking part of the text with hypertext, CoCapture highlights
and replays the referenced visual context with a solid-colored bor-
der (Fig. 2.b1). Meanwhile, to make an animation more glanceable,
we designed the “Inbetweening” panel (Fig. 2.F). This was inspired
by the technique of inbetweening in computer graphics—the pro-
cess of generating all the frames of a motion sequence given its
first and last frames—that helps to accurately communicate about
animations [8]. Unlike the preview feature introduced before, the
“Inbetweening” panel presents four key frames of the referenced
animation using simple linear interpolation in between. More ad-
vanced interpolation calculation algorithms could be applied in
future work to make it more expressive [54]. Similar to the pre-
view feature design, each key frame represents a simplified state of
the relevant elements (e.g., color, proportional size) using a hollow
square. For example, in Fig.2.F, the “Inbetweening” panel presents
the four key frames of the profile image motion animation when
the user clicks the hypertext attached to “slowly.”

5 SYSTEM EVALUATION
We conducted two initial user studies to evaluate CoCapture’s effec-
tiveness to help users create, describe, and understand UI mockup
questions. Primarily, we wanted to answer the following questions:

• Q1: Can designers ask a more accurate UI behavior question
using CoCapture than with a text-based communication tool
(e.g., email)? (Study 1)

• Q2: Can they also create the questions more quickly? (Study
1)

• Q3: Can helpers easily understand the questions in CoCap-
ture? (Study 2)

6 STUDY 1 - CREATING UI BEHAVIOR
QUESTIONS

To evaluate question creation, we designed a two-condition, within-
subjects study. We recruited 15 participants (9 male, 6 female, age
25–30) from a local participant pool with an average of 3.5 years of
UI prototyping experience. All participants had native or bilingual

CHI ’21, May 8–13, 2021, Yokohama, Japan

a

b

c

d

Figure 5: Screenshots of two of the user study tasks: the Reddit website (left column), and an SVG game (right column). The
screenshots with a red border (a, c) are the existing UIs, whereas the green ones (b, d) are the desired UIs that the participants
were asked to create and describe during the study. The tasks were designed with three goals: realistic, common, and complex.
For the Reddit website task, the issue with the existing UI is that some of the DOM elements are not responsive to window
resizing user input. For the SVG game task, participants need to add new game behaviors such that when the game character
hits the block and the star shape element, the game scene will change dynamically and a new element (the cyan shield shown
in the last image) will be added to the scene.

proficiency in English. Instead of using open-ended tasks, each par-
ticipant was presented with four websites and asked to create one
question per website regarding a predefined UI behavior issue. This
can help us compare the description accuracy between conditions.
They used either CoCapture or the tools in the control condition, in
a randomized order. In the control condition, we asked participants
to use Gmail9 and Google Drawings10 to compose their questions.
We chose these tools because of their low learning curve and similar
functionality to other prototyping tools. We only recruited people
who had prior experience with both these tools. We chose these
tools because of their low learning curve and similar functional-
ity to those mentioned in the needfinding study. In the treatment
condition, participants first watched a tutorial on CoCapture and
replicated the example in the tutorial.

9www.google.com/gmail/
10docs.google.com/drawings/

To recreate a situation in which the participants would naturally
describe a new UI behavior on top of their websites, similar to a
prior study setup [42], we asked participants to imagine themselves
as the designer of the task UI, and also told them that a helper with
domain knowledge (but no prior information about the task) will
review their questions. We conducted follow-up interviews after
each session. We compensated each participant with $20 USD for
their time.

We asked participants to ask two questions per condition: one
for web UI behavior, and one for SVG game UI behavior. We created
the tasks with three goals in mind: they need to be commonly seen
in practice, the UIs should look realistic, and they should be near
the upper limit (in terms of complexity) of what CoCapture can
handle. To achieve these goals, we used two common commercial
websites (Reddit11 and Stack Overflow12) and an open-source SVG

11www.reddit.com
12www.stackoverflow.com

www.google.com/gmail/
docs.google.com/drawings/
www.reddit.com
www.stackoverflow.com

CoCapture CHI ’21, May 8–13, 2021, Yokohama, Japan

game13. We modified their UIs to replicate the popular UI issues
we found in our needfinding study. We designed their complexity
to result in highly dynamic transformation upon user input and
the interplay between different DOM elements, both of which could
help demonstrate the strength of CoCapture. Figure 5 shows two
of the tasks: Reddit (left column), and an SVG game (right column).
The screenshots with red borders (labeled a, c in Figure 5) are the
existing UIs that we gave to the participants at the beginning of the
study, and the ones with green borders (labeled b, d) are the desired
output that we asked the participants to create and describe. Here
we describe how these two tasks can show the ceiling of CoCapture
along different dimensions:

• The Reddit task can show two dimensions of CoCapture’s
strength. First, a large part of the existing UI (e.g., header,
trending section, and the content DOM elements) already
have pre-built behaviors and constraints. With CoCapture,
participants do not have to worry about what they are and
how to reconstruct them. Second, one desired behavior is
to remove the “Today’s top growing” element (right-most
one in Fig. 5 b) when the width of the browser is smaller
than a certain threshold. CoCapture helps participants to
save all the effort of dealing with the correlated behaviors
on other non-target elements (e.g., siblings, parents) be-
cause the recording automatically preserves the underlying
DOM structure within each snapshot, which static layout-
capturing tools like WebToLayers cannot.

• The SVG game task shows two other dimensions of CoCap-
ture’s strength. First, the desired behavior requires adding a
new element to the later part of the demonstration (the cyan
shield shown at the bottom in Fig. 5 d). This will require
participants to use the “Sketch” feature to add new elements.
More generally, this requirement covers all the cases where
new elements are required to be added or occur in the later
part of a UI behavior, which is infeasible to replicate if us-
ing a static capturing tool (single UI state at one timestamp).
Second, the desired behavior requires the player to plan out
their demonstration, including record imaginary interaction
with new elements that they would add later (e.g., colliding
with the star as it moves left shown in the 2nd screenshot in
Fig. 5 d)). CoCapture makes this process easier by making
any visual elements easy to manipulate and modify after the
recording is done, which existing screencast recording tools
do not offer.

We designed these tasks using a rubric based on the common
issues we found from our needfinding study (see supplementary
material).

Similar to our needfinding study setup, we want to simulate a
scenario where the participants have the desired UI changes in mind
but have no direct access to them. To avoid biases, for each task we
gave participants both the existing UI and the desired UI (i.e., ground
truth), and used only visual annotation (e.g., cursor pointing) and
determiners (e.g., “this part”) to point out the differences between
the existing and desired UIs, without offering specific descriptions.
Participants could always access this information throughout the

13github.com/starzonmyarmz/js13k-2018

session and were not allowed to use any materials from the desired
UI artifact (e.g., no screenshots).

6.1 Results and Analysis
We compared the accuracy of each question—the number of require-
ments satisfied by the description—and the time spent on asking
each question between conditions. To measure the accuracy, we
recruited an expert, a teaching staff member from a UI develop-
ment course taught at the first author’s university. We adopted the
evaluation method from prior work that measures the correctness
of touch behavior implementation [46]. We provided the expert
with the task rubric, the existing UI, and the desired UI artifacts (see
supplemental material). The rubric included items corresponding
to the UI behavior requirements we gave to participants, and all
items contributed equally to the accuracy percentages reported be-
low. The expert evaluated the question for each item by examining
whether the item description matched. We calculated (the number
of matched items / total number of items) to work out the accuracy
per question. We used a two-tailed Welch’s t-test for our statistical
analysis.

6.1.1 Participants Created More Accurate Questions with CoCap-
ture. Participants were able to create more accurate questions in
the CoCapture condition (p < .0001) than in the control condi-
tion, resulting in average recall of 92.08% (σ = 12.17%, CoCapture)
and 54.05% (σ = 18.46%, control) of the rubric items (Table 1)
(Q1). The questions in the control condition included more words
(µ = 115.71,σ = 68.83,p < .001) than the CoCapture question did
(µ = 38.23,σ = 18.16), but we found no significant difference in the
number of visual references (p > .05). These visual references in-
cluded images and sketches in the control condition and animations
in the treatment condition. This indicates that CoCapture helps
participants spend less effort describing the dynamic UI behaviors
through writing. We found no sufficient evidence that using Co-
Capture would force participants to add extra visual information,
which can be overwhelming for those who review the questions.

6.1.2 Participants Who Used CoCapture Spent Less Time Writing.
One potential downside of using CoCapture is the time that it
takes to create desired behaviors by capturing the base scene and
adding the behaviors. Overall, we have insufficient evidence that
using CoCapture will require more or less time to create a question
(Q2) (Control (seconds): µ = 645.68,σ = 377.39, Treatment: µ =
482.96,σ = 190.77, p > .1). We further observed and annotated the
video to break down the overall time, allowing us to understand how
participants used CoCapture, especially the time that they spent
writing the description and creating visual references. We found
that, in terms of time, the trade-off between the two conditions
existed in authoring animations and writing textual descriptions.
While the participants in the control group spent most of their
time writing textual descriptions, the opposite was true in the
treatment condition: participants using CoCapture spent most of
their time creating visual references via animated behavior (See
Fig. 6). In the control condition, the participants’ sketch activity
included taking screenshots and sketching the desired output, but
the limitations on what they could express led them to spend more
time describing the behavior via text. These results suggest that

github.com/starzonmyarmz/js13k-2018

CHI ’21, May 8–13, 2021, Yokohama, Japan

Control CoCapture

description accuracy (%)∗∗∗ 54.05 (18.46) 92.08 (12.17)
of words in description∗∗ 115.71 (68.83) 38.23 (18.16)
of visual references (ns) 2.29 (1.01) 2.53 (0.52)
of application switches∗∗∗ 15.10 (6.98) 5.03 (1.46)

Table 1: Measurements from 15 participants using CoCapture
and control tools (Email + Google Drawings). Description accu-
racy (%) is calculated using (the number of satisfied items in a
rubric / total number of items). Visual references include im-
ages, sketches, and animations. ** indicates p < .001, *** indi-
cates p < .0001. ns indicates not statistically significant. Their
corresponding standard deviations are in parentheses.

visual reference text

Ti
m

e
sp

en
t (

se
co

nd
)

0

100

200

300

400

500

600

700

800

control

treatment

Figure 6: Time spent (s) on visual reference creation
and text writing for the two conditions. The participants
spent more time on creating animations and less time
on writing the textual description in the treatment con-
dition. For both cases, the differences were significant
(p < 0.0001).

CoCapture encourages designers to actually prototype the behavior
visually, which increased the description accuracy, as opposed to
describing it in NL.

An additional benefit of using CoCapture was that it required
less context switching (e.g., switching between applications), as
participants could write down their questions and create visual
references in a single application. The participants in the control
group switched more frequently between different applications
(p < 0.0001), as shown in Table 1. This indicates that CoCapture can
reduce users’ cognitive effort by requiring less context switching
across different applications.

6.2 System Usability and Study Insights
To better understand CoCapture’s other usability benefits or issues,
we ran a thematic analysis on the interview transcripts with our
own observations of participants’ behavior patterns from the video.

6.2.1 CoCapture Is Needed, Useful, and Easy to Use. All the par-
ticipants (15/15) recognized part or all of the scope, purpose, and
value of CoCapture. For example, P15 summarized that:

“To redo this [study task] in like [Adobe] After Effects, which is
probably what you would have to use, you basically have to rebuild
every single part of this. At that point, you might as well just wing
it and see if you can pull it off. Because it’s gonna take such a long
time to develop the animation, which will be ridiculous. So yes I think
CoCapture totally makes sense.”

Additionally, all the participants (15/15) gave positive feedback
on CoCapture’s UI, feeling it saved them effort on “thinking about
the description [or] writing the code” (P10) and was easy to use,
as “it’s very similar to video or audio editing” (P1). Furthermore,
all participants used the hypertext feature. They found it “super
important” (P3, P9), thought it helped “save effort/time” (P2, P5–P10,
P12–P15) in describing behaviors that were difficult to explain via

text, and said that it helped them to be “more concise” (P4, P11)
when creating their questions.

6.2.2 Describing Behavior Without Knowing the Exact Terms Was a
Complex Task. In the control condition, we found that some par-
ticipants were not able to clearly describe (underspecified) certain
objects in their email. Five participants struggled to find suitable
terms for different interface elements (e.g., the game character). As
a result, they either took screenshots of the elements and annotated
them or described the object using its properties (e.g., black box).
Four participants in the control condition said that they spent a
great deal of time writing the question as clearly as possible to
ensure that the helper would understand their requests. One par-
ticipant even searched for the name of a type of game action to
make the question “clear enough for others” (P4). This suggests that
communicating visual information using text can be both time-
consuming and difficult. In the treatment condition, we instead
observed that the participants were able to simply use demonstra-
tive pronouns (e.g., this) with hypertext.

6.2.3 CoCapture Helped Decrease Users’ Mental Processing Costs.
Participants in the control condition had to frequently switch be-
tween creating visual references and writing text (Table 1). In con-
trast, 11 participants in the treatment condition created the entire
animation first and then wrote the question in CoCapture. CoCap-
ture helped participants “expend less effort thinking about phrasing
and terminology” (P7). One participant noted that “once I had the
mockup made, I can kind of just refer back to that. So it was eas-
ier” (P5). This suggests CoCapture shaped participants’ workflow
when creating questions, helping them organize the information
and potentially better match the mental model through visual com-
munication.

CoCapture CHI ’21, May 8–13, 2021, Yokohama, Japan

6.2.4 Capturing Dynamic Behaviors with Static Information Was
Difficult. In the control condition, two-thirds of the participants
(10/15) used Google Drawings to sketch on top of screenshots or
create mockups of the desired interface from scratch. Three partici-
pants failed to adequately capture the scene of the game character
staying in the air, as it required designers to operate multiple user
inputs (i.e., capturing, jumping) at the same time. In contrast, Co-
Capture enabled participants to pause existing behaviors in the
recording, making it easier to add consecutive or overlapping be-
haviors. The contrast between both groups’ feedback paints a clear
picture of the benefits brought by CoCapture’s ability to manipulate
elements of the existing behaviors.

6.2.5 Requests in the Control Condition Overspecified or Underspec-
ified Question Details. When describing visual behaviors, it can be
challenging to find the right specificity level. With the questions in
the control condition, we observed participants’ tendency to either
overspecify or underspecify their questions. The larger standard
deviation of the number of words (68.83) may be attributed to these
varying levels of specification (see Table 1). Additionally, we ob-
served that overly precise or unnecessary details made the resulting
description tedious and potentially more difficult for others to read
and comprehend, as shown in the study below. “My question [in
my email] was longer because I kind of describe all the behavior.
With CoCapture I kind of just say, hey, I want this [referring to an
object] to resize like this [referring to an animation]. Instead of saying
like, something much more specific” (P5). In turn, underspecifying
made participants’ requests unclear, which was confirmed from
the follow-up study (Study 2). This reflects the inherent challenges
that exist in current methods of visual communication, as they
only support text and static visual information creation, making
dynamic visual changes difficult to specify. Our results suggest
that CoCapture can help specify dynamic information by enabling
animation creation and remixing.

7 STUDY 2 - UNDERSTANDING UI BEHAVIOR
QUESTIONS

To evaluate CoCapture’s effectiveness in helping people understand
UI behavior questions, we recruited six participants from two pools—
the same participant pool as in Study 1, and Upwork14—to review
the questions created in Study 1. There was no overlap in partic-
ipants between the two studies, and all participants had at least
two years of UI development experience. Each participant acted
as a helper and was assigned to evaluate four questions created
by one participant (only one to reduce learning effect) in Study
1. Participants used the rubric (same as in Study 1) to rate each
question from 1 (not clear at all) to 5 (completely clear). Before
reviewing the two CoCapture questions, participants watched a
5-minute tutorial on the use of CoCapture, and they were also asked
to try it to review an example question. After the evaluations, we
interviewed each participant. We conducted Study 2 remotely using
TeamViewer15. Each session lasted 30 minutes, and we paid each
participant $15 USD.

14www.upwork.com.
15https://www.teamviewer.com/.

7.1 CoCapture Showed the Potential of
Facilitating Effective Comprehension of UI
Questions

While we did not conduct any statistical analysis due to the small
number of participants, the average time spent and clarity assess-
ment showed promise that CoCapture can be effective in helping
users comprehend questions. For the CoCapture questions, par-
ticipants spent 247.25s (σ = 152.03) evaluating them and gave an
average rating of 4.21 out of 5 (σ = 1.32) for clarity. In contrast, par-
ticipants rating questions from the control condition spent 311.83s
(σ = 176.12) and gave an average rating of 1.40 out of 5 (σ = 1.54).

7.2 CoCapture Questions Were Clearly
Presented

In the post-hoc survey and interview, all six participants (S1–S6)
found that the CoCapture questions were more clearly presented
(Q3). One participant noted that “it [CoCapture] is like combining
what the email does the best with what video does best” (S1), while
another said “it’s just like watching a video, and I don’t have to
guess what the text is asking” (S5). In contrast, participants thought
other people might fail to accurately interpret some UI behaviors
written in the control condition due to their lack of expressiveness
or implicit assumptions. “I know it’s common sense that the object
will disappear when the character hits it, but not everyone knows that,
so I can’t understand it when reading the question” (S5).

We also observed that all participants constantly scrolled up and
down the questions in the control condition (Gmail). S2 talked about
the reason: “I was scrolling up and down because I was like, where did
I see this information? It’s not said very clear. I had to read the email a
bunch of times to start building up my understanding of what it was
asking for.” For the CoCapture interfaces, by contrast, participants
found that the hypertext feature helped them navigate the visual
references more easily, lowering their cognitive effort. The preview
and motion trail feature for each mockup highlighted the associated
changes, guiding participants’ attention to the relevant information.
“I can actually see the visual like trail of the box moving associated
exactly with the NL that it’s written in” (S6).

8 DISCUSSION
In summary, we found that CoCapture helped participants in Study
1 (“requester” from now on) effectively communicate about UI be-
havior issues by easing the creation of desired behavior mockups
on existing websites and by clarifying NL descriptions with hyper-
text. This in turn made those behavior issues clear and explicit,
and it made the descriptions easier to navigate for participants in
Study 2 (“helper” from now on). Consistent with prior theory [29],
this finding indicates that clear visual context helps people ground
communication. However, we observed that the dynamic nature
of UI behaviors makes it more challenging for requesters to create
descriptions, even with basic visual information (e.g., screenshots,
sketches) as seen in [43].

www.upwork.com
https://www.teamviewer.com/

CHI ’21, May 8–13, 2021, Yokohama, Japan

8.1 Element-Based Animations as First-Class
Objects

As we have shown, requesters spent much more time writing text in
the control condition than in the treatment condition, and the length
of their written content was much greater. This is because common
editor tools, such as Gmail in this study, only support linear sets of
static content (e.g., text and images), which is limiting when trying
to convey dynamic and interactive behaviors. One requester shared
some of his working experience: “Half the time I work with people
where English is their second language. Being able to do it like this
[CoCapture] would save a lot of time because the amount of time spent
in trying to explain something to make sure that everybody’s on the
same page is very time-consuming” (P15). Communicating dynamic
visual information via text creates a burden for requesters, who
must describe their needs by dismantling the question into text and
static images, which can result in an underspecified description; it
also burdens helpers, who must connect this disparate information
in an attempt to imagine what visual behaviors the requester wants
to create.

CoCapture removes these burdens by enabling requesters to
communicate their visual context as a whole without breaking it
down further. Most helpers found that the UI behavior descriptions
in CoCapture were more explicit, contextualized, and clearly pre-
sented. This is because CoCapture helped designers form a mockup
of their requested visual behaviors to be delivered alongside their
textual description. It maintained the dynamic information as a
continuous and holistic view. Similar to the suggestions of prior
work that code should be treated as a first-class object rather than
a block of plain text [63], we argue that for UI behavior mockups,
element-based animations should be treated as first-class objects
rather than a combination of different pieces of information such
as screenshots or plain text descriptions. Additionally, these anima-
tions can guide designers to write more concise and understandable
questions than they could using the tools in the control condition.

8.2 Hypertext Helps Organize and Ground
Communication

Visual context and NL descriptions should co-exist during communi-
cation. With the desired UI behaviors created in CoCapture remixed
holistically with the pre-built UI behaviors, the hypertext feature
made it easier for requesters to explain their needs compared to
the linear presentation in the control condition. Similar to prior
work [59], the hypertext also served as visual cues to guide helpers
in the second study to more easily parse and navigate each ques-
tion. In the first study, we noticed that this feature freed requesters
from following the linear order of a question, as they must with
text-only descriptions. For questions that included multiple anima-
tions, the hypertext feature enabled helpers to prioritize those that
were more important or complex, and it also reduced the burden of
effort by helping them plan their response. To understand the ques-
tions, helpers constantly interacted with the remixed recording,
the referenced artifacts, and the hypertext feature in CoCapture;
when reading the emails, the interaction was limited to scrolling
up and down. Together, our findings show that CoCapture shifted
both requesters’ and helpers’ main attention from textual to visual
information—that is, the dynamic UI behaviors. It also changed their

main workflow from linear to cross-referenced between text and UI
behaviors, which we have shown to be appropriate (effective) for
communicating UI changes that involve the dynamic transformation
of multiple interface elements on existing websites.

8.3 Other Use Cases
Our evaluation study focused on the common scenario where a de-
signer wants to modify an animation as it is currently implemented
in a web UI. More broadly, CoCapture can be used in other cases
or implemented in other prototyping and development tools. For
example, CoCapture allows users to copy existing behaviors from
the recording and apply them to other elements (existing ones or
sketches). This is done by using the “Clone” and “Change element”
features (Fig. 3). Also, it allows designers to explore the relations
between new designs and existing constraints, helping them to iter-
ate on their own ideas before asking for feedback or development
support. In the user study, we also observed that participants use
CoCapture to iterate on the designs and figure out the optimal prop-
erties (e.g., location, responsive speed) when creating the desired
behaviors (there are different ways to create).

8.4 CoCapture’s Role in the Design Lifecycle
While we focused on demonstrating CoCapture’s strength in sup-
porting re-designing implemented websites, it can also be used at
the initial stage of the design because it is common practice to use
and refer to existing behaviors from existing websites when design-
ers explore different ideas. If a designer wanted to demonstrate the
desired behaviors by borrowing and revising the behaviors from an
existing website, CoCapture can still be useful at different stages in
the design cycle. This can support designer-developer communica-
tion, using revised or existing behaviors from an existing website
as a reference. Alternatively, CoCapture can be used at the ideation
stage, which can be useful for exploring different ideas as a group.

8.5 System Scope and Limitations
CoCapture is most helpful for communicating UI behaviors that
involve the dynamic transformation of multiple interface elements
on existing websites. It is less necessary for simple element property
changes (e.g., change the background color to red when clicking
a button), or UIs that contain few elements or behaviors. In such
cases, it is easy to reconstruct the artifacts from scratch using
tools like Figma or Adobe XD. Additionally, CoCapture currently
only supports web UI behaviors, but its interactive design and the
study findings could be applied to or used for reference in other
UI environments (e.g., mobile apps). Finally, while we chose the
baseline tools (i.e., Google Drawings and Gmail) for their simplicity
and low learning curve, they might not be the most commonly used
design tools.

8.6 Future Work
Participants in both studies provided suggestions on improving
CoCapture’s efficacy and usability. Two requesters felt that CoCap-
ture was similar to a video or audio editing tool, though it lacked
some common features of those tools, like the ability to automat-
ically save all changes or undo an action with a hotkey. Three

CoCapture CHI ’21, May 8–13, 2021, Yokohama, Japan

requesters wished they could link the same text to multiple mock-
ups or elements. This makes sense because designers often apply
the same effect to different elements (e.g., an HTML class), or multi-
ple behaviors to the same element (e.g., the box is moving while
shrinking). Additionally, multiple requesters wished CoCapture
indicated user inputs (e.g., click) during the demonstration on the
base scene replay. Along with this, they suggested adding an align-
ment feature, like snapping to a certain timestamp when dragging
the slider, to help them synchronize animations and the base scene
by time, attributes (e.g., x position), or ratios (i.e., change/time).
One way to realize this is to modularize the transition behavior
like Expresso [30] does. Three helpers suggested that CoCapture
highlight each hypertext as its corresponding element or animation
is replayed. We will accomplish this by enlarging the hypertext
when the recording plays at the start time of the associated mockup.
CoCapture also preserves the original web DOM tree structure, and
the style (e.g., layout), for each snapshot. Similar to Telescope [26],
future work can use this benefit to further link UI elements and
behaviors to related code snippets so that helpers can understand
the code context cohesively and provide assistance directly.

9 CONCLUSION
In this paper, we proposed an effective approach for UI designers to
communicate about changes or issues of interactive UI behaviors
on existing UIs. We designed and implemented CoCapture, which
instantiates this approach to enable users to 1) easily (through
direct manipulation) create animated mockups on top of arbitrarily
complex web interfaces by demonstrating and remixing, and 2)
effectively (via hypertext) communicate about these mockups with
easy referencing techniques. Compared to existing approaches, we
showed that CoCapture can help designers to create more accurate
and more organized questions with rich context. In sum, CoCapture
opens up opportunities for more effective UI iteration by providing
a natural and easy way of communicating interface behaviors.

10 ACKNOWLEDGEMENTS
We thank Walter S. Lasecki for his feedback on this work at the
early stage, our anonymous reviewers for their helpful suggestions
on this work, and our study participants for their time. This work
is supported by NSF Award 1915515.

REFERENCES
[1] 2020. Adobe XD. https://www.adobe.com/products/xd.html Accessed: April,

2020.
[2] 2020. Figma. https://www.figma.com/ Accessed: March, 2020.
[3] 2020. Google Inc. https://github.com/GoogleChromeLabs/ProjectVisBug Ac-

cessed: March, 2020.
[4] 2020. MutationObserver. https://developer.mozilla.org/en-US/docs/Web/API/

MutationObserver Accessed: March, 2020.
[5] 2020. Scrimba. https://www.scrimba.com/ Accessed: March, 2020.
[6] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive

record/replay for web application debugging. In Proceedings of the 26th annual
ACM symposium on User interface software and technology. 473–484.

[7] Brian Burg, Amy J Ko, and Michael D Ernst. 2015. Explaining visual changes
in web interfaces. In Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology. 259–268.

[8] N. Burtnyk and M. Wein. 1971. Computer-Generated Key-Frame Animation.
Journal of the SMPTE 80 (1971), 149–153.

[9] Kerry Shih-Ping Chang and Brad A Myers. 2012. WebCrystal: understanding
and reusing examples in web authoring. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. 3205–3214.

[10] Kathy Charmaz. 2006. Constructing grounded theory: A practical guide through
qualitative analysis. sage.

[11] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 963–975.

[12] Yan Chen, Sang Won Lee, Yin Xie, YiWei Yang, Walter S Lasecki, and Steve Oney.
2017. Codeon: On-demand software development assistance. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems. 6220–6231.

[13] Yan Chen, Maulishree Pandey, Jean Y Song, Walter S Lasecki, and Steve Oney.
2020. Improving Crowd-Supported GUI Testing with Structural Guidance. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[14] Pei-Yu Chi, Sen-Po Hu, and Yang Li. 2018. Doppio: Tracking ui flows and code
changes for app development. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–13.

[15] Parmit K Chilana, Nathaniel Hudson, Srinjita Bhaduri, Prashant Shashikumar,
and Shaun Kane. 2018. Supporting Remote Real-Time Expert Help: Opportunities
and Challenges for Novice 3D Modelers. In 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 157–166.

[16] Herbert H Clark and Susan E Brennan. 1991. Grounding in communication.
(1991).

[17] Cecília Kremer Vieira da Cunha and Clarisse Sieckenius de Souza. 2003. Toward a
culture of end-user programming understanding communication about extending
applications.

[18] Paul Dourish and Victoria Bellotti. 1992. Awareness and coordination in shared
workspaces. In Proceedings of the 1992 ACM conference on Computer-supported
cooperative work. 107–114.

[19] Susan R Fussell, Leslie D Setlock, Jie Yang, Jiazhi Ou, Elizabeth Mauer, and
Adam DI Kramer. 2004. Gestures over video streams to support remote collabo-
ration on physical tasks. Human-Computer Interaction 19, 3 (2004), 273–309.

[20] Lars Grammel, Melanie Tory, and Margaret-Anne Storey. 2010. How information
visualization novices construct visualizations. IEEE transactions on visualization
and computer graphics 16, 6 (2010), 943–952.

[21] Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document workflow histories. In Proceedings of the
23nd annual ACM symposium on User interface software and technology. 143–152.

[22] Carl Gutwin and Saul Greenberg. 2002. A descriptive framework of workspace
awareness for real-time groupware. Computer Supported Cooperative Work
(CSCW) 11, 3-4 (2002), 411–446.

[23] Carl Gutwin, Mark Roseman, and Saul Greenberg. 1996. A usability study of
awareness widgets in a shared workspace groupware system. In Proceedings of
the 1996 ACM conference on Computer supported cooperative work. 258–267.

[24] Carl Gutwin, Gwen Stark, and Saul Greenberg. 1995. Support for workspace
awareness in educational groupware.. In CSCL, Vol. 95. 147–156.

[25] Joshua Hibschman and Haoqi Zhang. 2015. Unravel: Rapid web application re-
verse engineering via interaction recording, source tracing, and library detection.
In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. 270–279.

[26] Joshua Hibschman and Haoqi Zhang. 2016. Telescope: Fine-tuned discovery of
interactive web UI feature implementation. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology. 233–245.

[27] David Kirk and Danae Stanton Fraser. 2006. Comparing remote gesture tech-
nologies for supporting collaborative physical tasks. In Proceedings of the SIGCHI
conference on Human Factors in computing systems. 1191–1200.

[28] David S Kirk and Danaë Stanton Fraser. 2005. The effects of remote gesturing on
distance instruction. (2005).

[29] Robert E Kraut, Susan R Fussell, and Jane Siegel. 2003. Visual information as
a conversational resource in collaborative physical tasks. Human–computer
interaction 18, 1-2 (2003), 13–49.

[30] Rebecca Krosnick, Sang Won Lee, Walter S Lasecki, and Steve Onev. 2018. Ex-
presso: Building responsive interfaces with keyframes. In 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 39–47.

[31] James A Landay and Brad A Myers. 1995. Interactive sketching for the early
stages of user interface design. In Proceedings of the SIGCHI conference on Human
factors in computing systems. 43–50.

[32] Walter S Lasecki, Juho Kim, Nick Rafter, Onkur Sen, Jeffrey P Bigham, and
Michael S Bernstein. 2015. Apparition: Crowdsourced User Interfaces that Come
to Life as You Sketch Them. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM, 1925–1934.

[33] Sang Won Lee and Jason Freeman. 2013. Real-time music notation in mixed
laptop–acoustic ensembles. Computer Music Journal 37, 4 (2013), 24–36.

[34] Sang Won Lee, Yujin Zhang, Isabelle Wong, Yiwei Yang, Stephanie D. O’Keefe,
and Walter S. Lasecki. 2017. SketchExpress: Remixing Animations for More
Effective Crowd-Powered Prototyping of Interactive Interfaces. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology
(Québec City, QC, Canada) (UIST ’17). Association for Computing Machinery,
New York, NY, USA, 817–828. https://doi.org/10.1145/3126594.3126595

https://www.adobe.com/products/xd.html
https://www.figma.com/
https://github.com/GoogleChromeLabs/ProjectVisBug
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://www.scrimba.com/
https://doi.org/10.1145/3126594.3126595

CHI ’21, May 8–13, 2021, Yokohama, Japan

[35] Germán Leiva and Michel Beaudouin-Lafon. 2018. Montage: A Video Prototyping
System to Reduce Re-Shooting and Increase Re-Usability. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology. 675–682.

[36] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020. Pronto:
Rapid Augmented Reality Video Prototyping Using Sketches and Enaction. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

[37] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[38] Yang Li, Xiang Cao, Katherine Everitt, Morgan Dixon, and James A Landay.
2010. FrameWire: a tool for automatically extracting interaction logic from paper
prototyping tests. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 503–512.

[39] James Lin, Mark W Newman, Jason I Hong, and James A Landay. 2000. DENIM:
finding a tighter fit between tools and practice for Web site design. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. 510–517.

[40] Michael McCurdy, Christopher Connors, Guy Pyrzak, Bob Kanefsky, and Alonso
Vera. 2006. Breaking the fidelity barrier: an examination of our current character-
ization of prototypes and an example of a mixed-fidelity success. In Proceedings
of the SIGCHI conference on Human Factors in computing systems. 1233–1242.

[41] David W McDonald, Chunhua Weng, and John H Gennari. 2004. The multiple
views of inter-organizational authoring. In Proceedings of the 2004 ACM conference
on Computer supported cooperative work. 564–573.

[42] Ronald Metoyer, Bongshin Lee, Nathalie Henry Riche, and Mary Czerwinski.
2012. Understanding the verbal language and structure of end-user descriptions
of data visualizations. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. 1659–1662.

[43] BradMyers, Sun Young Park, YokoNakano, GregMueller, and AmyKo. 2008. How
designers design and program interactive behaviors. In 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing. IEEE, 177–184.

[44] Jasper O’Leary, Holger Winnemöller, Wilmot Li, Mira Dontcheva, and Morgan
Dixon. 2018. Charrette: Supporting In-Person Discussions around Iterations
in User Interface Design. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–11.

[45] Steve Oney, Christopher Brooks, and Paul Resnick. 2018. Creating guided code
explanations with chat. codes. Proceedings of the ACM on Human-Computer
Interaction 2, CSCW (2018), 1–20.

[46] Steve Oney, Rebecca Krosnick, Joel Brandt, and Brad Myers. 2019. Implementing
Multi-Touch Gestures with Touch Groups and Cross Events. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[47] Stephen Oney and Brad Myers. 2009. FireCrystal: Understanding interactive
behaviors in dynamic web pages. In 2009 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 105–108.

[48] Stephen Oney, Brad Myers, and John Zimmerman. 2009. Visions for Euclase:
Ideas for Supporting Creativity through Better Prototyping of Behaviors. In ACM
CHI 2009 Workshop on Computational Creativity Support.

[49] John F Pane, Brad A Myers, et al. 2001. Studying the language and structure in
non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies 54, 2 (2001), 237–264.

[50] Jungkook Park, Yeong Hoon Park, and Alice Oh. 2018. Non-Linear Editing of
Text-Based Screencasts. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology. 403–410.

[51] Sun Young Park, Brad Myers, and Amy J Ko. 2008. Designers’ natural descriptions
of interactive behaviors. In 2008 IEEE Symposium on Visual Languages and Human-
Centric Computing. IEEE, 185–188.

[52] Amy Pavel, Dan B Goldman, Björn Hartmann, and Maneesh Agrawala. 2016.
VidCrit: video-based asynchronous video review. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology. 517–528.

[53] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. Mobiplay: A remote
execution based record-and-replay tool for mobile applications. In Proceedings of
the 38th International Conference on Software Engineering. 571–582.

[54] William T. Reeves. 1981. Inbetweening for Computer Animation UtilizingMoving
Point Constraints. In Proceedings of the 8th Annual Conference on Computer Graph-
ics and Interactive Techniques (Dallas, Texas, USA) (SIGGRAPH ’81). Association
for Computing Machinery, New York, NY, USA, 263–269.

[55] Hugo Romat, Emmanuel Pietriga, Nathalie Henry-Riche, Ken Hinckley, and
Caroline Appert. 2019. SpaceInk: Making Space for In-Context Annotations. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. 871–882.

[56] Amanda Swearngin, Mira Dontcheva, Wilmot Li, Joel Brandt, Morgan Dixon, and
Amy J Ko. 2018. Rewire: Interface design assistance from examples. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. 1–12.

[57] Kesler Tanner, Naomi Johnson, and JamesA Landay. 2019. Poirot: AWeb Inspector
for Designers. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–12.

[58] Edward R Tufte. 1983. The visual display of quantitative information. Vol. 2.

[59] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Callisto:
Capturing the" Why" by Connecting Conversations with Computational Narra-
tives. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[60] Patricia G Wojahn, Christine M Neuwirth, and Barbara Bullock. 1998. Effects of
interfaces for annotation on communication in a collaborative task. In Proceedings
of the SIGCHI conference on Human factors in computing systems. 456–463.

[61] Dongwook Yoon, Nicholas Chen, François Guimbretière, and Abigail Sellen.
2014. RichReview: blending ink, speech, and gesture to support collaborative
document review. In Proceedings of the 27th annual ACM symposium on User
interface software and technology. 481–490.

[62] Dongwook Yoon, Nicholas Chen, Bernie Randles, Amy Cheatle, Corinna E Löck-
enhoff, Steven J Jackson, Abigail Sellen, and François Guimbretière. 2016. RichRe-
view++ Deployment of a Collaborative Multi-modal Annotation System for In-
structor Feedback and Peer Discussion. In Proceedings of the 19th ACM Conference
on Computer-Supported Cooperative Work & Social Computing. 195–205.

[63] Joyce Zhu, Jeremy Warner, Mitchell Gordon, Jeffery White, Renan Zanelatto,
and Philip J Guo. 2015. Toward a domain-specific visual discussion forum for
learning computer programming: An empirical study of a popular MOOC forum.
In 2015 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 101–109.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Creating UI Prototypes and Mockups
	2.2 Visual References as Shared Context in Communication
	2.3 Record, Replay, and Manipulate Existing Interfaces

	3 Needfinding Studies
	3.1 Stack Overflow Analysis
	3.2 Needs and Challenges
	3.3 Design Goals

	4 CoCapture Design and Implementation
	4.1 The CoCapture User Experience
	4.2 Design and Implementation

	5 System Evaluation
	6 Study 1 - Creating UI Behavior Questions
	6.1 Results and Analysis
	6.2 System Usability and Study Insights

	7 Study 2 - Understanding UI Behavior Questions
	7.1 CoCapture Showed the Potential of Facilitating Effective Comprehension of UI Questions
	7.2 CoCapture Questions Were Clearly Presented

	8 Discussion
	8.1 Element-Based Animations as First-Class Objects
	8.2 Hypertext Helps Organize and Ground Communication
	8.3 Other Use Cases
	8.4 CoCapture's Role in the Design Lifecycle
	8.5 System Scope and Limitations
	8.6 Future Work

	9 Conclusion
	10 Acknowledgements
	References

