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ABSTRACT 

Multi-touch gestures can be very difficult to program cor-
rectly because they require that developers build high-level 
abstractions from low-level touch events. In this paper, we 
introduce programming primitives that enable program-
mers to implement multi-touch gestures in a more under-
standable way by helping them build these abstractions. Our 
design of these primitives was guided by a formative study, 
in which we observed developers’ natural implementations 
of custom gestures. Touch groups provide summaries of mul-
tiple fingers rather than requiring that programmers track 
them manually. Cross events allow programmers to summa-
rize the movement of one or a group of fingers. We imple-
mented these two primitives in two environments: a declar-
ative programming system and in a standard imperative 
programming language. We found that these primitives are 
capable of defining nuanced multi-touch gestures, which we 
illustrate through a series of examples. Further, in two user 
evaluations of these programming primitives, we found that 
multi-touch behaviors implemented in these programming 
primitives are more understandable than those imple-
mented with standard touch events. 
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1 Introduction 

For end-users, multi-touch user interfaces (UIs) can be more 
intuitive and direct than their mouse-keyboard counter-
parts. For developers, however, implementing multi-touch 
UIs can be counter-intuitive and error-prone, particularly 
when the UI involves custom gestures [13,15,16]. 

Researchers have proposed new gestures and have 
shown that allowing users to define their own gestures can 
have usability benefits [22,30]. For example, a drawing ap-
plication might include a custom gesture to allow artists to 
quickly switch between brushes. Although there are librar-
ies that allow developers to re-use pre-existing multi-touch 
gestures, programming multi-touch gestures is still a funda-
mental problem in human-computer interaction. 

1.1 Programming Multi-Touch Gestures 

Multi-touch behaviors are traditionally programmed using 
the event-action framework and three events: touchstart, 
touchmove, and touchend. In most multi-touch program-
ming frameworks, programmers define custom gestures 
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Figure 1: An illustration of a two-finger swipe-right gesture 
implemented with touch groups and cross events. Touch 
groups summarize properties of groups of touch events that 
move in synchrony. Cross events fire when a touch group 
crosses a given path. In this gesture, a 'twoFin-
gerRightSwipe' event fires after a two-finger touch group 
crosses a path 10 pixels to the right of where the touch group 
started. 
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using callbacks in response to these events. These callbacks 
then handle the specifics of each touch event by referencing 
unique touch identifiers. In this paper, we refer to such 
frameworks as “touch*” frameworks. However, there are 
several challenges that developers face when working with 
touch* frameworks. Correctly programming a multi-touch 
gesture requires building high-level abstractions from low-
level touch events by tracking the movement of multiple fin-
gers and maintaining consistency across a potentially large 
number of intermediate gesture states, and managing con-
flicts among multiple gestures [14,16]. 

1.2 Designing New Touch Primitives 

In this paper, we approach the challenges of multi-touch 
gesture programming with the goal of simplifying the un-
derlying events by introducing higher-level abstractions 
that can be used to program multi-touch gestures. We intro-
duce programming primitives that help developers write 
and test multi-touch gestures by abstracting away some of 
the challenging aspects of building these behaviors. 

To design our new touch primitives, we adopted natural 
programming techniques [20,21]. We asked four developers 
to write pseudo-code for four multi-touch gestures while de-
fining any high-level events that they found helpful in order 
to do so.  From these pilot studies, two design features were 
clear. First, when a multi-touch gesture involved multiple 
touches moving in synchrony (such as a two-finger tap 
where both fingers will be pressed and released around the 
same time and in the same area) participants naturally 
grouped them into a single event. This is in contrast with 
the mechanics of conventional touch* frameworks, where 
touch events are limited to the individual touches. Second, 
participants often drew annotations on their sketches to 
mark interaction areas and paths. These annotations were 
not meant to be visible in the user interface, but to mark 
gesture boundaries. Defining the position of these annota-
tions, their dynamics, and their interactions with touch* 
events can be challenging. 

We defined touch group and cross event primitives to ad-
dress the design needs we observed in our pilot studies. We 
implemented these primitives both in regular JavaScript and 
in the InterState  programming framework [23]. 

1.3 Contributions 

This paper makes the following contributions: 
• Introducing “touch groups” as a way to enable more ex-

pressive multi-touch gestures by summarizing one or 
multiple fingers. 

• Introducing “cross events” as a primitive component of 
multi-touch gestures that help developers by summa-
rizing the movement of a touch group and by allowing 

developers to define custom shapes and produce an 
event if a touch group crosses them. 

• Introducing primitives to help developers manage con-
flicts between multi-touch gestures implemented with 
touch groups and cross events. 

• Evaluations of these touch primitives that show that 
they can be more effective than traditional (touch*) pro-
gramming mechanisms. 

In this paper, we first discuss related work, which focuses 
on previous multi-touch event models, gesture recognition 
techniques, and other UI programming techniques. After re-
lated work, we detail our new primitives, touch groups and 
cross events. We then discuss our evaluations of the reada-
bility and writability of these primitives compared to a tra-
ditional multi-touch event model. We subsequently illus-
trate the effectiveness of these primitives by describing ex-
amples of custom gestures and their implementations with 
touch groups and cross events. Finally, we conclude with a 
discussion of our scope and future work. 

2 Related Work 

Previous research has shown that custom multi-touch ges-
tures are pervasive [5,7], as developers invent new multi-
touch gestures [22] or mix and match previous gestures [9]. 
Researchers have proposed a number of systems to help de-
velopers define multi-touch gestures. The following sec-
tions will review a few of the previous approaches research-
ers have taken. 

2.1  Multi-Touch Abstractions and Event Models 

Several other researchers and projects have proposed alter-
native event models and multi-touch abstractions. Different 
abstractions make different assumptions about which as-
pects of a behavior are important and which can be ab-
stracted away. 

Several projects have proposed declarative event mod-
els where developers specify the features of the gestures in 
which they are interested rather than how to classify them 
[6]. These systems are built to help abstract away the low-
level code to track and maintain a gesture’s state. GDL [11], 
Proton [14], and Proton++ [13] all introduce various declar-
ative syntaxes for defining multi-touch behaviors that are 
built on touch-* events.   Similar syntaxes could be built with 
touch groups and cross events. 

CoGest [4], GeForMT [8,10], and Midas [26] propose al-
ternative syntaxes for declaring or modeling custom ges-
tures that are more abstracted away from touch-* events 
than our proposed primitives (for example, linear movement 
gestures are built-in primitives). Although this level of ab-
straction can help to greatly simplify how one describes 
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gestures, they come at the cost of flexibility and expressive-
ness. To the best of our understanding from reading these 
papers, we could not build the example gestures described 
later in the paper with these frameworks. 

2.2  Automated Gesture Recognition Techniques 

An alternate way to help developers define multi-touch ges-
tures is by allowing them to train and use a gesture recog-
nizer. GRANDMA [25] was one of the first automatic ges-
ture recognition systems. The $1 gesture recognizer [29] fo-
cuses on making it easier to include custom gestures in ap-
plications. Gesture Coder [16] builds on previous work by 
allowing developers to create state machines for classifying 
multi-touch gestures by demonstrating gesture examples to 
its learning system. Our system focuses on giving the pro-
grammer exact control over the recognition of the gestures, 
rather than relying on statistical techniques. 

2.3  Cross Gestures and Picking Views 

Our proposed multi-touch primitives also include a way for 
developers to “draw” custom shapes on the screen and bind 
events to them. This idea is analogous to “picking views” in 
MDPC (an extension of MVC) [3]. For instance, in both 
MDPC and cross events, developers can specify that they 
want a menu to slide out if the user presses in the bottom 
left corner by drawing a rectangle in the bottom left corner 
of the screen and binding event handlers to touch events on 
this rectangle. This rectangle would not be visible to users 
of the applications but would be visible for developers to 
help them debug. We extend picking views by allowing such 
shapes to be dynamic through constraints. 

Cross gestures have been proposed as an interaction 
technique in mouse/keyboard [1] and touch [17,18] environ-
ments, but the cross events we propose are used by devel-
opers to help them define the state of multi-touch gestures. 
Cross events have also been used in EventHurdle [12] to 
help designers prototype mobile applications. However, our 
system is more expressive by allowing developers to define 
cross events on custom, dynamic paths and enabling cross 
events to be combined in the context of a larger multi-touch 
gesture. Further, by combining cross events with touch 
groups (described in the next section), we allow developers 
to summarize the movement of multiple user touches. 

3 Touch Groups 

Touch groups introduce a way to describe multi-finger touch 
events. Touch groups serve both as events and as a set of 
options that are required for that event to fire (or be “satis-
fied”). When a touch group is satisfied, it provides its posi-
tion, rotation, scale, force, and several other output variables 

that can be used by developers. Touch groups also include 
conflict management mechanisms to help developers re-
solve conflicts among multiple gestures in the same inter-
face. The following sections describe touch groups’ options, 
outputs, and the conflict management mechanisms. 

3.1  Touch Group Options 

A touch group enables developers to specify the number of 
fingers (numFingers) required for it to be satisfied. In the 
trivial case, numFingers=1 and the touch group is equiva-
lent to a touch* event. Current gesture recognition toolkits, 
such as Apple’s UIGestureRecognizer and Android’s Ges-
tureDetector, only allow the number of fingers to be speci-
fied for pre-built gestures (such as double tap or zoom) ra-
ther than on the event level, as we propose. Enabling the 
number of fingers to be specified on the event level allows 
developers to write custom gestures in a more understand-
able way. 

When numFingers>1, the touch group summarizes 
multiple touch events. For example, if the developer wants 
to start when two fingers touch the screen, then numFin-
gers would be 2, and the touch group would fire only when 
two fingers hit the screen at the same time. However, multi-
finger touches are not simultaneous for every type of multi-
finger gesture. For example, most pan-and-zoom interfaces 
allow users to pan with one finger for any amount of time 
before zooming with a second finger. 

To handle both cases, touch groups include a customi-
zable field maxTouchInterval that specifies maximum 
time between the first and last element of this touch group, 
which defaults to 100 milliseconds for nearly simultaneous 
touches. Similarly, the individual touches that comprise a 
multi-finger touch group might need to be sufficiently close 
(in position) to each other to be valid. For example, a two-
finger tap typically requires that both touches are adjacent 
as well as nearly simultaneous. In touch groups, a maxRa-
dius field allows developers to declare the maximum dis-
tance between the touches of a multi-finger gesture. Touch 
groups also include downInside and downOutside op-
tions that specify shapes that touches need to be inside (or 
outside) of for the touch group to fire. These parameters can 
also be ignored by setting their value to false. 

3.2  Touch Group Outputs 

Touch groups summarize multiple fingers in the context of 
a touch group object. This object provides the position (x 
and y) as the centroid of its constituent touches. The touch 
group also includes the locations of the individual fingers. 
Touch groups’ outputs are best utilized in constraints, which 
declare a relationship once and have it be automatically 



CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK Steve Oney, Rebecca Krosnick, Joel Brandt, Brad Myers  
 

 

 

maintained. For example, given a touch group object named 
tg, and a left-hand panel pnl, we could define a single con-
straint that defines the panel’s position relative to the user’s 
finger. Defined as a constraint, this relationship would hold 
even as users move their fingers: 

pnl.x := min(0, tg.x-pnl.width) 

For gestures whose properties are defined relative to 
fingers’ starting or ending locations (such as swipe gestures 
that fire when touches move far enough away from their 
initial position), touch groups also track fingers’ start and 
end positions (startX, startY, endX, and endY) for both 
the touch group as a whole and for each individual finger. 
For example, the code in Figure 7 uses startX and startY 
to calculate a circle around where the user initially presses. 

For multi-finger touch groups, the relative distances be-
tween constituent touches can fire continuous gestures. For 
example, standard pan-and-zoom interfaces typically allow 
users to scale and rotate a viewport by spreading and twist-
ing their fingers. Touch groups provide scale and rota-
tion fields that developers can leverage. A simple pan-and-
zoom interface for viewport vp can be defined with four 
constraints for a touch group tg2(numFingers=2,down-
Inside=vp): two to set its position (as specified by vp.x 
and vp.y), one to specify its scale (vp.scale), and one to 
specify its rotation (vp.rotation), as follows: 

vp.x := vp.startX + tg2.x - tg2.startX 

vp.y := vp.startY + tg2.y – tg2.startY 

vp.scale := vp.startScale * tg2.scale 

vp.rotation := vp.startRotation + tg2.rotation 

3.3  Touch Group Conflict Management 

Another challenge in multi-touch programming is disam-
biguating between “conflicting” gestures—gestures that may 
be triggered by the same set of touch inputs. Touch groups 
use two built-in mechanisms to resolve conflicts among ges-
tures. Event states allow gestures to wait for higher-priority 
events before firing. Touch-claiming allows gestures to re-
solve conflicts that are not temporally separated. 

3.2.1 Event States. For example, most touchscreen Web 
browsers open a link when the user single-taps a page link 
and zoom when a user double-taps. Without conflict man-
agement, the first finger of the double-tap might errone-
ously trigger the single finger event. For example, when a 
user double-taps a page link, the browser should typically 
discard the two single taps and instead zoom in response to 
the double-tap. In our system, the conflict between the sin-
gle-tap and double-tap gestures is managed by delaying the 
first single-tap from firing until it can be determined if the 
user will double-tap, and marking the two touch groups that 

only one should fire. To reduce the end-developer’s burden 
of managing conflicting gestures, touch groups provide a 
notion of event states that abstracts away many of the chal-
lenges of dealing with conflicting behaviors. 

These event states build on previous event models [19] 
by adding delays and differentiating between requested and 
confirmed event firings. Every touch group satisfaction 
event has four atomic sub-events (indicated in RED CAPI-

TAL LETTERS in Figure 2): REQUESTED, CONFIRMED, 
CANCELLED, and BLOCKED. Every touch group has a cus-
tomizable timeout that specifies how long to wait between 
event requests and confirmations and a priority. By de-
fault, every event uses timeout=0 and priority=0, mean-
ing there is no distinction between requests and confirma-
tions. Figure 3 illustrates the sequence of states that single-
tap and double-tap gestures follow.  

Event priorities represent a simple way to deal with 
many types of conflicts between multi-touch events: if an 
event with a higher priority fires, then any lower-priority 
requested events are blocked. When event priorities are not 
sufficient—for example, if a gesture should be cancelled if 
the interface changes state—developers can also use their 
own conflict resolution mechanisms by directly calling 
.cancel() any time after it has been requested (but before 
it has been confirmed). Touch groups also include an 
eventGroup property that allows touch groups to be 
grouped by event type or target widget. When an event-
Group property is specified, event groups’ priorities only 
apply within that group. 

One of the most common ways to resolve ambiguities 
in two potentially conflicting events is by adding a short de-
lay before firing an event. If this delay is long enough to be 
noticeable, the interface should also give intermediate feed-
back for a single tap during the delay period. For example, 
in an interface that must disambiguate between a tap and a 
long press might display a count-down timer to show how 
long the interface will wait before triggering a long press.  

Implementing this method of conflict resolution, partic-
ularly while giving users intermediate feedback, is challeng-
ing in standard touch frameworks because of the interac-
tions between timeouts, event listeners, and any intermedi-
ate feedback mechanisms. By contrast, as Figure 3 illus-
trates, managing these conflicts is relatively easy with our 
touch group conflict management mechanisms. 

3.2.2 Greedy and Non-Greedy Touch Groups. Not all conflict-
ing gestures are temporally separated. For example, in iOS 
version 9, a one-finger swipe from the left edge of the 
touchscreen pulls out a sidebar and a five-finger swipe from 
the left edge of the touchscreen changes the currently exe-
cuted application. Here, the five-finger swipe has a higher 



Implementing Multi-Touch Gestures with Touch Groups and Cross Events CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK 
 

 

priority than the one-finger swipe and should thus prevent 
the one-finger one from triggering. These conflicts can oc-
cur both in standard touch* frameworks and in touch-
group-based gestures. For example, suppose a developer de-
fines one three-finger touch group (anywhere on the 
screen), and three one-finger touch groups (for different 
places on the screen). By default, when the user presses 
three fingers down in the target areas for the three one-fin-
ger groups, all four event groups will fire, as Figure 4 shows. 

In Figure 4, all four touch groups would fire. However, 
this is not always the desired interaction between touch 
groups. Thus, to allow developers to specify how touch 
groups should interact with each other, they include a 
“greedy” field that specifies whether a given touch group 
should allow other touch groups to use the same fingers as 
it uses. Figure 5 illustrates an example of greedy behavior. 

The “greedy” property can be used in conjunction with 
the event delay feature to resolve many of the common con-
flicts between multi-finger gestures. The delay feature al-
lows touch groups to delay before confirming the event and 
wait for another touch group to register. 

4 Cross Events 

Many multi-touch gestures depend on the path that a user’s 
finger takes [9,14,27]. For example, many touchscreen 
scrolling interfaces determine if a user’s finger is moving 
vertically, horizontally, or diagonally to determine which di-
rection to scroll in. Implementing these behaviors using 
only touch move events can be difficult, particularly if the 
behavior involves multiple fingers. In fact, many multi-
touch classifiers use machine learning to abstract away 
these details [15,16,29]. However, machine learning is error-
prone, requires multiple examples, and can unnecessarily 
difficult to use for recognizing common gestures. 

Cross events are events that fire when a touch group 
(described above) moves across a path that the developer 
specifies. Similar ideas have been explored in the context of 
end-user interfaces [1] and a less general version for proto-
typing interactions [12]. 

4.1  Cross Event Options 

Cross events have several customizable options in addition 
to a touch group and a path. Path cross events also allow 
developers to specify the minimum and maximum speeds 
(in pixels per second) that a user’s finger must have for that 

 
Figure 3: The sequence of states for single-tap and double-
tap gestures as a user performs a single-tap then a double-
tap. The states and events that are shown here reference 
those that are defined in Figure 2. In this example, there are 
two instantiations of the state machine: one for single-tap 
and one for double-tap. The single-tap gesture uses 
timeout=dbl_interval and the double-tap gesture uses 
timeout=0. User actions are shown on the left. After the user 
performs a single tap, the single-tap event is requested and 
confirmed after dbl_interval milliseconds. When the user 
performs a double tap, the double-tap event blocks the sin-
gle-tap event, because it has a higher priority. 

 
Figure 2: A state machine showing the various states of a 
touch event with priority p. An event can be in three states: 
idle, pending fire, or pending block. By default, every event is 
in the idle state. When the event fires (a), it enters the pend-
ing state. After enough time (as defined by the timeout pa-
rameter, default:0), the event’s firing is confirmed (b). If the 
event firing is cancelled before the timeout interval passes, 
then the event is cancelled (c). If a higher priority event is 
requested before the timeout interval passes, then the event 
moves to the pending block stage (f). If any other event with 
a higher priority is confirmed, then the event is blocked (d). 
If all the events with a higher priority are cancelled, then 
the event will return to the pending fire state (g). If the event 
times out while in the “pending block” state, then the event 
is blocked (e) and does not fire. 
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cross event to fire. For example, a cross event defining swipe 
gesture might require that a user’s finger is travelling with 
sufficient velocity to fire. By default, both the minimum and 
maximum speed parameters are false, meaning that the 
cross event will fire at any speed. 

4.2  Dynamic Paths 

The meaning of a given touch gesture often depends on the 
position of UI elements [3], device-specific variables (such 
as dimensions), and the position of other fingers. Thus, cross 
events allow developers to use custom, dynamic paths that 
are computed using other context. Enabling these paths to 
be dynamic allows developers to define events relative to 
other interface elements or touch event locations. For exam-
ple, in determining if a user is swiping left or right with two  
fingers, the developer can define a two-finger touch group 
and define (hidden) lines immediately to the left and right 
of where those fingers start. If the touch group crosses ei-
ther of those lines, either the left or right cross event fires, 
depending on the swipe direction. A developer can also 
specify that a press and hold gesture should be aborted if the 
user moves their finger too far. They can define “too far” by 
computing a circle around where a touch group starts and 
when a cross event fires (meaning that the user’s finger 
moved outside of the circle boundary), transitioning the ges-
ture back to the default state. 

5 User Evaluation of Readability 

We performed two studies of touch groups and cross events 
relative to touch* events. The first study focused on under-
standability and the second study (described in section 6) on 
writability. In the first user study, our goal was to evaluate 
the understandability of the events themselves, so we used 

textual representations for the touch groups, cross events, 
and touch* events. 

5.1  User Evaluation Setup 

We recruited 18 participants who all had programming ex-
perience. We asked participants to read the code for multi-
touch behaviors and asked them to specify which gesture 
that code implements. As Figure 6 and Figure 7 illustrate, 
participants selected one of four options for every imple-
mentation. Each option contained a brief description of the 
behavior and an animation of example touch sequences that 
activated the behavior. At the start of the study, we asked 
participants to complete a demographic questionnaire. 

We used a within-subjects design where every partici-
pant was given 10 touch* implementations and 10 touch 
group/cross event implementations. The specified imple-
mentations and multiple-choice options were randomized 
per-participant. Participants were given a short tutorial ex-
plaining how both paradigms worked. To account for learn-
ing effects, we randomized the order of implementations 
that participants used. Each study lasted approximately one 
hour (30 minutes per implementation). 
3.2.2 Controlling for External Factors. To ensure that the 
multi-touch behaviors we used were representative, we 
chose four dimensions along which we varied our behav-
iors. Our dimensions are based on prior work [9,30]: 
• Standard vs. custom: “standard” gestures to be multi-

touch gestures that are currently widespread, as op-
posed to “custom” gestures. We define “widespread” to 
mean that they are implemented as built-ins in either 
the iOS or Android gesture recognizers. For example, 
standard gestures include pinch to zoom and 
press+hold. 

• Discrete vs. continuous: “discrete” gestures have a single 
output whereas “continuous” gestures have a start and 

 
Figure 5: Like in Figure 4, here the developer has defined one 
three-finger touch group and three one-finger touch groups. 
However, the developer has specified that the three-finger 
touch group should be “greedy”, so that other touch groups 
should not fire with any of the touches used. In this case, 
when the user presses three fingers down, only the three-
finger touch group will fire. 
 

 
Figure 4: The default, “non-greedy” behavior for touch 
groups is that every touch group can claim the same fingers. 
For instance, suppose a developer defines one three-finger 
touch group and three one-finger touch groups across dif-
ferent elements in an interface. With non-greedy behavior, 
when the user presses three fingers down, all four touch 
group activation events would fire. 
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end. For example, a tap is a discrete gesture and a scroll 
is a continuous gesture. 

• Static vs. dynamic: “static” gestures do not involve fin-
ger movement along x or y coordinates or in the “third-
dimension” (such as pressure), whereas “dynamic” ges-
tures rely on the path fingers take. Thus, press+hold 
gesture is static whereas a right-swipe is dynamic. 

• One-finger vs. multi-finger: “one-finger” gestures in-
volve one touch at a time whereas “multi-finger” ges-
tures involve multiple fingers moving in synchrony. A 
right-swipe is a one-finger gesture whereas a two-fin-
ger swipe right (Figure 1) is a multi-finger gesture. 

We implemented at least one instance of every permu-
tation of these four dimensions (for example, tap and 
press+hold are standard/discrete/static/one-finger). In total, 

we implemented 20 behaviors. For each behavior, we imple-
mented a touch* version and a group/cross version for a to-
tal of 40 implementations. Although gestures that are both 
static and continuous are relatively uncommon, we used 
pressure-sensitive gestures (also known as “force touch”) in 
our user study. Our gesture implementations had an average 
length of 54 lines for touch* implementations and 47.5 lines 
for touch group/cross event implementations. The relatively 
small difference (6 lines) in length illustrates that touch* 
code is difficult to understand because users find it hard to 
follow the control flow, not because it is overly verbose. 

To ensure that our implementations of the touch* be-
haviors in code were representative, we hired a third-party 
developer to implement them and we asked another profes-
sional developer to refactor any parts of our implementa-
tions that they thought were unclear. We also asked them 
to ensure that variable names were clear and were similar 

 
Figure 6: Participants were given the code for a multi-touch 
behavior. In this example, the code implements a “tap” ges-
ture. To gauge their understanding of the code, they were 
asked to select which behavior that code implemented, from 
the four choices at the bottom. Participants were given ten 
behaviors in one implementation (either touch* or touch 
groups/cross events) and then ten using the other imple-
mentation. We randomized the implemented behaviors, 
multiple choice options, and multiple-choice ordering. 

 

 
Figure 7: The same (“tap”) behavior as Figure 6, implemented 
with cross events touch groups. In addition to being more 
concise than the touch* implementation of the same ges-
ture, many modifications to this gesture that would require 
significant changes to the touch* implementation are 
straightforward. For example, changing this gesture from a 
one-finger tap to a two-finger tap requires significant 
changes to the touch* implementation but is a one-line 
change in the touch group/cross event implementation (up-
dating the second line to numFingers: 2). Using correctness 
in this task as a measure of understanding, participants 
were better able to understand code written with touch 
groups and cross events than with touch* events. 
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between implementations, and that no variable name gave 
away the answer. 

Finally, to ensure that participants read and attempt to 
understand every implementation’s code (as opposed to 
looking at the four multiple-choice options and answering 
by elimination) we added a 30 second delay before the mul-
tiple-choice options appeared. Thus, participants were re-
quired to read and attempt to understand the behavior im-
plementation before selecting any answers.  

5.2  Results 

Our quantitative results are shown in Table 1. Participants 
were able to understand a higher percentage of behaviors in 
less time when those behaviors were implemented with 
touch groups and cross events than when they were imple-
mented with touch* events. With touch* events (“control”), 
participants correctly answered 53.3% (stdev 0.235m) of the 
questions in an average of 2.41 minutes per question (stdev 
0.97m). With touch groups and cross events, participants 
correctly answered 68.0% (sample stdev 0.201) of the ques-
tions in an average of 1.95 minutes per question (stdev 0.57). 
A pair-wise two-tailed t-test showed that participants were 
significantly faster (p=0.035) and had significantly more cor-
rect answers (p= 0.013) when reading the touch group and 
cross event implementation than the standard multi-touch 
programming framework. 

We observed benefits across every type of gesture, as 
Table 1 shows, including statistically significant differences 
in custom, discrete, dynamic, and multi-finger touch ges-
tures. In Table 1, better than average results are shaded in 
green and worse than average results are shaded in orange. 
Statistically significant differences are represented with 
* (p<0.05) or ** (p<0.01) in a two-tailed paired t-test.  

As the “setup” section above describes, participants 
spent at least 30 seconds reading code before they could 

select an option. This means that the minimum possible time 
for either condition was 30 seconds*10 tasks = 5 minutes. 
Thus, participants did spend time evaluating the multiple-
choice options and reading the behavior implementations 
after the required 30 seconds. 

To gain more insight into participants’ thought pro-
cesses when reading both implementations, we gave every 
participant a post-study questionnaire. From these re-
sponses, a few commonalities emerged. According to partic-
ipants, touch groups and cross events were a higher-level 
abstraction that they found helpful: 

“This [touch group + cross event] implementation is a level of 
abstraction higher than the [touch*] implementation, which 
makes the code much more regular and easy to read. Once you 
understand the flow of create a [group], draw a shape, and re-
spond to touch events, then each gesture is easy to get through 
quickly. This implementation also seems more conductive to 
good practices than the [touch*] implementation.” 
(P11, prior UI programming experience: intermediate) 

“It breaks the variables and functions out with better natural 
language for the user and is pretty intuitive to understand.” 
(P3, prior UI programming experience: limited) 

Participants also expressed that although touch* events 
were easy to understand in theory, they are difficult to com-
prehend in actual behavior implementations: 

“[the touch* implementation] was easier to understand on paper 
but difficult to comprehend in code.” 
(P2, prior UI programming experience: basic) 

“[The touch* implementation] loads a lot of information into the 
three functions, so it can often be difficult to read and under-
stand quickly. Event handlers like that are just generally kind of 
a mess to read.” 
(P3, prior UI programming experience: limited) 

  Standard  Custom  Discrete  Continuous  Static  Dynamic  1-Finger  Multi-Finger OVERALL 

Control 

time (mins) 2.17 2.59 2.40 2.40 2.31 2.69 2.49 2.33 2.41 

stdev  ± 0.72  ± 1.25  ± 1.02  ± 1.24  ± 0.92  ± 1.20  ± 1.17  ± 0.95 ± 0.97 

correct of 10 5.08 5.47 5.32 5.34 5.72 4.26 5.64 5.03 5.33 

stdev  ± 2.57  ± 2.37  ± 2.47  ± 3.38  ± 2.86  ± 2.81  ± 2.57  ± 2.93 ± 2.35 

Group+ 

Cross  

time (mins) 1.92 1.94 2.06 1.94 2.09 2.02 2.02 1.87 1.95 

stdev  ± 1.26  ± 0.84  ± 0.95  ± 1.39  ± 1.59  ± 0.79  ± 1.10  ± 0.79 ± 0.95 

correct of 10 7.47 6.23 6.30 7.39 6.74 7.24 6.19 7.32 6.80 

stdev  ± 1.92  ± 2.80  ± 2.71  ± 2.30  ± 2.20  ± 2.79  ± 2.98  ± 2.52 ± 2.01 

Difference 
time (mins) -0.25 -0.65* -0.35** -0.47 -0.22 -0.67* -0.47 -0.47* -0.46* 

correct of 10 +2.39 +0.76* +0.98** +2.05 +1.01 +2.99* +0.54 +2.30* +1.47* 

Table 1: This table summarizes the user study results broken down by gesture type (green cells represent a better performance 
than the overall average and orange cells represent a worse performance than the overall average). We focus on two options 
in each of four categories: standard or custom, discrete or continuous, static or dynamic, and 1-finger or multi-finger. Thus, 
each gesture fell into one of 24=16 types. We found consistent performance gains in nearly every category for gestures im-
plemented with touch groups and cross events. Performance gains were also especially high for multi-fingered and dynamic 
gestures, both of which averaged significantly more correct answers in significantly less time in the touch group+cross event 
conditions. We found that overall, participants using cross events and touch groups were able to complete significantly more 
tasks in significantly less time. * denotes p<0.05 ** denotes p<0.01 in a two-tailed paired t-test. 
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5.3  Discussion 

As our post-study survey indicates, participants were more 
favorable towards touch groups and cross events than they 
were towards touch* implementations. Further, quantitative 
results from our studies also indicate that, in practice, pro-
grammers are better able to understand gestures written 
with touch groups and cross events as well.  

To put our results into perspective, most participants 
had little to no experience programming user interface code 
and only intermediate programming experience. Although 
our average gesture implementation was only slightly over 
50 lines of code, interactions between callbacks (in both con-
ditions) make understanding this kind of code difficult. 
Thus, although there is still room for improvement, a suc-
cess rate of 68% vs. 53.3% for conventional code shows the 
promise of the touch primitives that this paper introduces. 

Still, it is important to note their scope: our evaluation 
only studied the understandability of the events themselves, 
as opposed to visual representations for the events or other 
aspects (such as the event conflict resolution mechanisms 
and their expressiveness). Therefore, we performed another 
study to test the success of users writing complete touch ges-
tures in ours vs. a conventional environment. 

6 User Evaluation of Writability 

Our second user study evaluates how easily programmers 
can write custom gestures using touch groups and cross 
events relative to touch* events. We studied touch groups 
and cross events in two settings: textual (JavaScript) code 
and a GUI interface based on the InterState UI [23]. 

6.1  User Evaluation Setup 

We recruited an additional 10 participants who all had UI 
programming experience. We used a within-subjects design. 
Every participant was asked to implement three behaviors: 
a three-finger press+hold gesture, a one-finger “L”-shaped 
swipe (down then to the right) gesture, and a multi-part ges-
ture where the user places down two fingers and taps a third 
finger (similar to how custom menus are invoked in some 
touchscreen applications). Every participant implemented 
each behavior in either: 

• JavaScript code with touch* events 
• JavaScript code with touch groups + cross events 
• A GUI interface with touch groups + cross events. The 

GUI was based on the InterState  programming UI [23]. 
In this GUI, participants defined state machines to spec-
ify the touch behaviors (see Figure 8).  

We randomized which behavior was paired with which 
implementation and the order. All participants were also 
given three brief tutorials (10–15 minutes each) on how to 
use each of these implementation tools, and we gave partic-
ipants a maximum 20 minutes per task. None of our partic-
ipants had participated in the prior readability study. 

6.2  Results 

In order to analyze our results, we used not only partici-
pants’ completion times but we also developed a rubric to 
measure participants’ accuracy. The rubric includes items 
corresponding to the gesture behavior requirements we de-
scribed to participants, and all items contribute equally to 
the accuracy percentages reported below. We applied the 
same rubric across all implementation conditions to ensure 
consistency. As Table 2 shows, participants in both Group + 
Cross conditions outperformed participants in the Touch-* 
control condition—both in time taken and in accuracy. How-
ever, although the averages show promise, our results were 
not statistically significant in a two-tailed t-test. We believe 
this is largely because of high variance across participants 
in how long a given programming task takes. 

In a post-test survey, we found that participants felt 
that the touch group + cross event mechanism was easy to 
learn: participants agreed 6.3/7 (Agree) that learning to use 
the touch group + cross event GUI was easy and 5.4/7 
(Mildly agree) that it was easy to learn to use touch groups 

 

Touch-* in 

JavaScript 

Group+Cross 

in JavaScript 

Group+Cross 

GUI 

time (m)   18.88 ± 2.97 16.11 ± 4.64 13.55 ± 6.52 

accuracy  51.0% ± 38% 59.26% ± 46% 74.1% ± 43% 

p (time)  - 0.0685 0.0708 

Table 2: The average time taken (in minutes) and accuracy 
(as a percentage) of participants’ implementations. The last 
row shows the results of a pairwise two-tailed t-test relative 
to the touch-* condition. 
 

 
Figure 8: An example of the UI for defining behaviors in the 
GUI / touch group + cross event condition via a state ma-
chine. The black dot symbolizes the start state. Small light 
squares symbolize states. The larger grey squares specify 
transition events (e.g., cross events or touch group events).  
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+ cross events in JavaScript code. We also interviewed par-
ticipants after the study. According to participants, touch 
groups and cross events were intuitive: 

“The ability to specify the path to say exactly where you want 
the event to actually cross was helpful, instead of trying to cal-
culate it yourself. Just be able to make a circle, to make an event 
handler for crossing that line, instead of trying to calculate 
where those points were and where they are now. And it’s nice 
that the circle can update its position based on the object.” 
(P19, UI programming experience: 2–3 years) 

6.3  Discussion 

Overall, our two studies (the readability study with less ex-
perienced programmers and the writability study with more 
experienced programmers) both indicate that touch groups 
and cross events could be effective in simplifying touch ges-
ture programming. 

In the writability study, some participants were con-
fused about exactly when a particular touch group would be 
active, especially when multiple touch groups existed; this 
is due in part to our tutorial not explaining all touch group 
configurable parameters and what the default settings were. 

7 Touch Gesture Examples 

Although our two user studies indicate the usability of 
touch groups and cross events, it is also important that these 
primitives are capable of expressing realistic novel touch 
gestures. To illustrate the expressiveness of these multi-
touch constructs, we implemented several examples of 

custom multi-touch gestures from prior HCI literature 
[2,24,28]. We used touch groups and cross events in Inter-
State [23] to implement each of these example gestures. 

7.1  Pressure-Sensitive Gestures 

Rendl et al. proposed two sets of pressure-sensitive multi-
touch gestures for pressure-sensitive trackpads [24]. The 
first set of gestures is illustrated in Figure 9. We imple-
mented this behavior with three touch groups: two for the 
two two-finger gestures and one for the three-finger resize 
gesture. To disambiguate between them, the three-finger 
touch group is “greedy”, meaning it the two-finger touch 
groups do not fire when the three-finger group is active. The 
two-finger group for moving the viewport also specifies a 
minimum pressure and is “greedy”, meaning that when it 
activates, it prevents the light two-finger scrolling gesture.  

Rendl et al.’s second proposed gesture set helps users 
perform modifications to text documents, which Figure 10 
illustrates. In our implementation, we used four touch 
groups and six cross events. The heavy one-finger press to 
initiate commands is represented with a one-finger greedy 
touch group, with downInside set to a rectangle in the top 
quartile of the trackpad. When this touch group is satisfied, 
the gesture enters “command” mode and listens for one of 
three defined commands: text selection, enumeration, or in-
dentation. Each of these commands is initiated when a sec-
ond touch group moves sufficiently either vertically or hor-
izontally (as specified by a cross event). 

 
Figure 9: An illustration of a set of pressure-sensitive track-
pad gestures. When the user presses three fingers on the 
trackpad, the selected window resizes in response (yellow, 
top right). When the user presses with two fingers, the view-
port scrolls (blue, bottom left) or the window moves (red, 
bottom right) depending on the finger pressure. Our imple-
mentation manages conflicts between these three gestures 
and standard one-finger touches (grey, top left). 

resize window with
three fingers

move window with
two-finger hard press

scroll viewport with
two-finger light press

one-finger touches
work normally

 
Figure 10: An illustration of three gestures for pressure-sen-
sitive trackpads that manipulate text. Here, the user initi-
ates “command mode” with a heavy (high pressure) one-fin-
ger press in the top left quadrant of the trackpad. As the 
user holds that finger down, they can perform a light (low 
pressure) one-finger vertical scroll gesture to select text 
(top), a heavy two-finger gesture to enumerate the selected 
text (middle), or a light two-finger scroll gesture to specify 
the selected text’s indentation (bottom). The paths that spec-
ify cross events that initiate the gesture are shown in red. 
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7.2  HandMark Menus 

HandMark menus are contextual menus that appear when a 
user presses a multi-touch screen with either two or five fin-
gers [28]. Uddin et al. propose two versions of HandMark 
gestures: one invoked with two fingers and one invoked 
with five fingers. Figure 11 illustrates both versions. 

We implemented both versions of HandMark menus. 
Each implementation uses two touch groups; one for the 
multi-finger menu invocation and one for item selection. 
Icons’ locations are specified by constraints relative to each 
finger’s location. By implementing these gestures using 
touch groups, implementing the five-finger invocation re-
quired modifying only three equations from the two-finger 
invocation (two to update the icons’ x and y positions and 
one to change the number of fingers in the touch group).  

7.3  Pie Menus 

Banovic et al. proposed three alternative designs for pie con-
textual menus [2], as Figure 12 illustrates. These three de-
signs differ in how they are invoked: by a one-finger press 
and hold, a one-finger tap, and a one-finger double-tap. As 
in HandMark menus, the menu invocation is accomplished 
with a one-finger touch group. The location of every icon is 
specified with a constraint relative to the position of that 
touch group.  

8 Scope and Limitations 

Touch groups contain a superset of touch-* events, meaning 
that any GUI behavior can be expressed with touch-* events 
could be expressed with touch groups (one could define a 

one-finger touch group). However, touch groups are more 
useful when the fingers they contain move in synchrony. 
When an individual finger's motion is important, it is best 
defined in its own touch group. 

Our implementation of cross events was not designed 
for highly “path-specific” gestures, such as shape recogni-
tion. For example, a handwriting gesture might specify that 
a phone’s camera should open when a user draws a “C” on 
the touchscreen. For these types of gestures, we believe a 
machine-learned classifier is likely still the best tool for 
building a gesture recognizer [15,29]. We are exploring 
whether path crossing events might help developers under-
stand machine-learned path-specific behaviors. In the cam-
era example above, a handwriting classifier might generate 
a series of paths in the shape of a “C” and specify that if a 
touch group crosses over 80% of those paths in the correct 
order, the “camera” event should fire. 

9 Conclusion 

We presented touch groups and cross events as mechanisms 
for defining custom multi-touch gestures. We found that 
these primitives can implement nuanced custom multi-
touch behaviors. Our user evaluation and our experience 
with using them to implement many gestural behaviors 
found that multi-touch behaviors implemented with touch 
groups and cross events are more understandable than those 
implemented using a standard multi-touch framework. 
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Figure 11: An illustration of HandMark menus. HandMark 
menus are contextual menus that a user invokes with a 
multi-finger gesture. We implemented two different version 
of hand-mark menus. In the two-finger version (left) the 
user invokes a context menu by pressing with two fingers. 
As the user moves their two fingers, the menu follows. The 
user can then use a third finger to select a single item. In the 
five-finger version (right), users invoke the context menu by 
pressing the touchscreen with five fingers. Menu items then 
follow the individual fingers as they move. Users can use a 
sixth finger to select a menu item. 
 

 
Figure 12: An illustration of a custom contextual pie menu 
for touchscreen devices. We created three implementations 
with minimal changes to the gesture’s implementation: 1) 
the user holds their finger then selects a menu item, 2) the 
user taps their finger then selects a menu item, or 3) the user 
double taps their finger then selects a menu item. 
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