
Implementing Multi-Touch Gestures with
Touch Groups and Cross Events

Steve Oney
School of Information
University of Michigan

Ann Arbor, MI, USA
soney@umich.edu

Rebecca Krosnick
School of Computer Science

University of Michigan
Ann Arbor, MI, USA

rkros@umich.edu

Joel Brandt
Adobe Research

Adobe
Santa Monica, CA, USA
joel.brandt@adobe.com

Brad Myers
HCI Institute

Carnegie Mellon University
Pittsburgh, PA, USA

bam@cs.cmu.edu

ABSTRACT

Multi-touch gestures can be very difficult to program cor-
rectly because they require that developers build high-level
abstractions from low-level touch events. In this paper, we
introduce programming primitives that enable program-
mers to implement multi-touch gestures in a more under-
standable way by helping them build these abstractions. Our
design of these primitives was guided by a formative study,
in which we observed developers’ natural implementations
of custom gestures. Touch groups provide summaries of mul-
tiple fingers rather than requiring that programmers track
them manually. Cross events allow programmers to summa-
rize the movement of one or a group of fingers. We imple-
mented these two primitives in two environments: a declar-
ative programming system and in a standard imperative
programming language. We found that these primitives are
capable of defining nuanced multi-touch gestures, which we
illustrate through a series of examples. Further, in two user
evaluations of these programming primitives, we found that
multi-touch behaviors implemented in these programming
primitives are more understandable than those imple-
mented with standard touch events.

CCS CONCEPTS
• Human-Centered Computing → User interface programming

KEYWORDS
multi-touch; programming; software development; frameworks

ACM Reference format:
Steve Oney, Rebecca Krosnick, Joel Brandt, Brad Myers. 2019. Implement-
ing Multi-Touch Gestures with Touch Groups and Cross Events. In 2019
CHI Conference on Human Factors in Computing Systems Proceedings (CHI
2019), May 4–9, 2019, Glagsow, Scotland, UK. ACM, NY, NY, USA. 13 pages.
https://doi.org/10.1145/3290605.3300585

1 Introduction

For end-users, multi-touch user interfaces (UIs) can be more
intuitive and direct than their mouse-keyboard counter-
parts. For developers, however, implementing multi-touch
UIs can be counter-intuitive and error-prone, particularly
when the UI involves custom gestures [13,15,16].

Researchers have proposed new gestures and have
shown that allowing users to define their own gestures can
have usability benefits [22,30]. For example, a drawing ap-
plication might include a custom gesture to allow artists to
quickly switch between brushes. Although there are librar-
ies that allow developers to re-use pre-existing multi-touch
gestures, programming multi-touch gestures is still a funda-
mental problem in human-computer interaction.

1.1 Programming Multi-Touch Gestures

Multi-touch behaviors are traditionally programmed using
the event-action framework and three events: touchstart,
touchmove, and touchend. In most multi-touch program-
ming frameworks, programmers define custom gestures

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org).
CHI 2019, May 4-9, 2019, Glagsgow, Scotland, UK.
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5970-2/19/05...$15.00.
DOI: https://doi.org/10.1145/3290605.3300585

Figure 1: An illustration of a two-finger swipe-right gesture
implemented with touch groups and cross events. Touch
groups summarize properties of groups of touch events that
move in synchrony. Cross events fire when a touch group
crosses a given path. In this gesture, a 'twoFin-
gerRightSwipe' event fires after a two-finger touch group
crosses a path 10 pixels to the right of where the touch group
started.

mailto:soney@umich.edu
mailto:rkros@umich.edu
mailto:joel.brandt@adobe.com
mailto:bam@cs.cmu.edu
https://doi.org/10.1145/3290605.3300585
https://doi.org/10.1145/3290605.3300585

CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK Steve Oney, Rebecca Krosnick, Joel Brandt, Brad Myers

using callbacks in response to these events. These callbacks
then handle the specifics of each touch event by referencing
unique touch identifiers. In this paper, we refer to such
frameworks as “touch*” frameworks. However, there are
several challenges that developers face when working with
touch* frameworks. Correctly programming a multi-touch
gesture requires building high-level abstractions from low-
level touch events by tracking the movement of multiple fin-
gers and maintaining consistency across a potentially large
number of intermediate gesture states, and managing con-
flicts among multiple gestures [14,16].

1.2 Designing New Touch Primitives

In this paper, we approach the challenges of multi-touch
gesture programming with the goal of simplifying the un-
derlying events by introducing higher-level abstractions
that can be used to program multi-touch gestures. We intro-
duce programming primitives that help developers write
and test multi-touch gestures by abstracting away some of
the challenging aspects of building these behaviors.

To design our new touch primitives, we adopted natural
programming techniques [20,21]. We asked four developers
to write pseudo-code for four multi-touch gestures while de-
fining any high-level events that they found helpful in order
to do so. From these pilot studies, two design features were
clear. First, when a multi-touch gesture involved multiple
touches moving in synchrony (such as a two-finger tap
where both fingers will be pressed and released around the
same time and in the same area) participants naturally
grouped them into a single event. This is in contrast with
the mechanics of conventional touch* frameworks, where
touch events are limited to the individual touches. Second,
participants often drew annotations on their sketches to
mark interaction areas and paths. These annotations were
not meant to be visible in the user interface, but to mark
gesture boundaries. Defining the position of these annota-
tions, their dynamics, and their interactions with touch*
events can be challenging.

We defined touch group and cross event primitives to ad-
dress the design needs we observed in our pilot studies. We
implemented these primitives both in regular JavaScript and
in the InterState programming framework [23].

1.3 Contributions

This paper makes the following contributions:
• Introducing “touch groups” as a way to enable more ex-

pressive multi-touch gestures by summarizing one or
multiple fingers.

• Introducing “cross events” as a primitive component of
multi-touch gestures that help developers by summa-
rizing the movement of a touch group and by allowing

developers to define custom shapes and produce an
event if a touch group crosses them.

• Introducing primitives to help developers manage con-
flicts between multi-touch gestures implemented with
touch groups and cross events.

• Evaluations of these touch primitives that show that
they can be more effective than traditional (touch*) pro-
gramming mechanisms.

In this paper, we first discuss related work, which focuses
on previous multi-touch event models, gesture recognition
techniques, and other UI programming techniques. After re-
lated work, we detail our new primitives, touch groups and
cross events. We then discuss our evaluations of the reada-
bility and writability of these primitives compared to a tra-
ditional multi-touch event model. We subsequently illus-
trate the effectiveness of these primitives by describing ex-
amples of custom gestures and their implementations with
touch groups and cross events. Finally, we conclude with a
discussion of our scope and future work.

2 Related Work

Previous research has shown that custom multi-touch ges-
tures are pervasive [5,7], as developers invent new multi-
touch gestures [22] or mix and match previous gestures [9].
Researchers have proposed a number of systems to help de-
velopers define multi-touch gestures. The following sec-
tions will review a few of the previous approaches research-
ers have taken.

2.1 Multi-Touch Abstractions and Event Models

Several other researchers and projects have proposed alter-
native event models and multi-touch abstractions. Different
abstractions make different assumptions about which as-
pects of a behavior are important and which can be ab-
stracted away.

Several projects have proposed declarative event mod-
els where developers specify the features of the gestures in
which they are interested rather than how to classify them
[6]. These systems are built to help abstract away the low-
level code to track and maintain a gesture’s state. GDL [11],
Proton [14], and Proton++ [13] all introduce various declar-
ative syntaxes for defining multi-touch behaviors that are
built on touch-* events. Similar syntaxes could be built with
touch groups and cross events.

CoGest [4], GeForMT [8,10], and Midas [26] propose al-
ternative syntaxes for declaring or modeling custom ges-
tures that are more abstracted away from touch-* events
than our proposed primitives (for example, linear movement
gestures are built-in primitives). Although this level of ab-
straction can help to greatly simplify how one describes

Implementing Multi-Touch Gestures with Touch Groups and Cross Events CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

gestures, they come at the cost of flexibility and expressive-
ness. To the best of our understanding from reading these
papers, we could not build the example gestures described
later in the paper with these frameworks.

2.2 Automated Gesture Recognition Techniques

An alternate way to help developers define multi-touch ges-
tures is by allowing them to train and use a gesture recog-
nizer. GRANDMA [25] was one of the first automatic ges-
ture recognition systems. The $1 gesture recognizer [29] fo-
cuses on making it easier to include custom gestures in ap-
plications. Gesture Coder [16] builds on previous work by
allowing developers to create state machines for classifying
multi-touch gestures by demonstrating gesture examples to
its learning system. Our system focuses on giving the pro-
grammer exact control over the recognition of the gestures,
rather than relying on statistical techniques.

2.3 Cross Gestures and Picking Views

Our proposed multi-touch primitives also include a way for
developers to “draw” custom shapes on the screen and bind
events to them. This idea is analogous to “picking views” in
MDPC (an extension of MVC) [3]. For instance, in both
MDPC and cross events, developers can specify that they
want a menu to slide out if the user presses in the bottom
left corner by drawing a rectangle in the bottom left corner
of the screen and binding event handlers to touch events on
this rectangle. This rectangle would not be visible to users
of the applications but would be visible for developers to
help them debug. We extend picking views by allowing such
shapes to be dynamic through constraints.

Cross gestures have been proposed as an interaction
technique in mouse/keyboard [1] and touch [17,18] environ-
ments, but the cross events we propose are used by devel-
opers to help them define the state of multi-touch gestures.
Cross events have also been used in EventHurdle [12] to
help designers prototype mobile applications. However, our
system is more expressive by allowing developers to define
cross events on custom, dynamic paths and enabling cross
events to be combined in the context of a larger multi-touch
gesture. Further, by combining cross events with touch
groups (described in the next section), we allow developers
to summarize the movement of multiple user touches.

3 Touch Groups

Touch groups introduce a way to describe multi-finger touch
events. Touch groups serve both as events and as a set of
options that are required for that event to fire (or be “satis-
fied”). When a touch group is satisfied, it provides its posi-
tion, rotation, scale, force, and several other output variables

that can be used by developers. Touch groups also include
conflict management mechanisms to help developers re-
solve conflicts among multiple gestures in the same inter-
face. The following sections describe touch groups’ options,
outputs, and the conflict management mechanisms.

3.1 Touch Group Options

A touch group enables developers to specify the number of
fingers (numFingers) required for it to be satisfied. In the
trivial case, numFingers=1 and the touch group is equiva-
lent to a touch* event. Current gesture recognition toolkits,
such as Apple’s UIGestureRecognizer and Android’s Ges-
tureDetector, only allow the number of fingers to be speci-
fied for pre-built gestures (such as double tap or zoom) ra-
ther than on the event level, as we propose. Enabling the
number of fingers to be specified on the event level allows
developers to write custom gestures in a more understand-
able way.

When numFingers>1, the touch group summarizes
multiple touch events. For example, if the developer wants
to start when two fingers touch the screen, then numFin-
gers would be 2, and the touch group would fire only when
two fingers hit the screen at the same time. However, multi-
finger touches are not simultaneous for every type of multi-
finger gesture. For example, most pan-and-zoom interfaces
allow users to pan with one finger for any amount of time
before zooming with a second finger.

To handle both cases, touch groups include a customi-
zable field maxTouchInterval that specifies maximum
time between the first and last element of this touch group,
which defaults to 100 milliseconds for nearly simultaneous
touches. Similarly, the individual touches that comprise a
multi-finger touch group might need to be sufficiently close
(in position) to each other to be valid. For example, a two-
finger tap typically requires that both touches are adjacent
as well as nearly simultaneous. In touch groups, a maxRa-
dius field allows developers to declare the maximum dis-
tance between the touches of a multi-finger gesture. Touch
groups also include downInside and downOutside op-
tions that specify shapes that touches need to be inside (or
outside) of for the touch group to fire. These parameters can
also be ignored by setting their value to false.

3.2 Touch Group Outputs

Touch groups summarize multiple fingers in the context of
a touch group object. This object provides the position (x
and y) as the centroid of its constituent touches. The touch
group also includes the locations of the individual fingers.
Touch groups’ outputs are best utilized in constraints, which
declare a relationship once and have it be automatically

CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK Steve Oney, Rebecca Krosnick, Joel Brandt, Brad Myers

maintained. For example, given a touch group object named
tg, and a left-hand panel pnl, we could define a single con-
straint that defines the panel’s position relative to the user’s
finger. Defined as a constraint, this relationship would hold
even as users move their fingers:

pnl.x := min(0, tg.x-pnl.width)

For gestures whose properties are defined relative to
fingers’ starting or ending locations (such as swipe gestures
that fire when touches move far enough away from their
initial position), touch groups also track fingers’ start and
end positions (startX, startY, endX, and endY) for both
the touch group as a whole and for each individual finger.
For example, the code in Figure 7 uses startX and startY
to calculate a circle around where the user initially presses.

For multi-finger touch groups, the relative distances be-
tween constituent touches can fire continuous gestures. For
example, standard pan-and-zoom interfaces typically allow
users to scale and rotate a viewport by spreading and twist-
ing their fingers. Touch groups provide scale and rota-
tion fields that developers can leverage. A simple pan-and-
zoom interface for viewport vp can be defined with four
constraints for a touch group tg2(numFingers=2,down-
Inside=vp): two to set its position (as specified by vp.x
and vp.y), one to specify its scale (vp.scale), and one to
specify its rotation (vp.rotation), as follows:

vp.x := vp.startX + tg2.x - tg2.startX

vp.y := vp.startY + tg2.y – tg2.startY

vp.scale := vp.startScale * tg2.scale

vp.rotation := vp.startRotation + tg2.rotation

3.3 Touch Group Conflict Management

Another challenge in multi-touch programming is disam-
biguating between “conflicting” gestures—gestures that may
be triggered by the same set of touch inputs. Touch groups
use two built-in mechanisms to resolve conflicts among ges-
tures. Event states allow gestures to wait for higher-priority
events before firing. Touch-claiming allows gestures to re-
solve conflicts that are not temporally separated.

3.2.1 Event States. For example, most touchscreen Web
browsers open a link when the user single-taps a page link
and zoom when a user double-taps. Without conflict man-
agement, the first finger of the double-tap might errone-
ously trigger the single finger event. For example, when a
user double-taps a page link, the browser should typically
discard the two single taps and instead zoom in response to
the double-tap. In our system, the conflict between the sin-
gle-tap and double-tap gestures is managed by delaying the
first single-tap from firing until it can be determined if the
user will double-tap, and marking the two touch groups that

only one should fire. To reduce the end-developer’s burden
of managing conflicting gestures, touch groups provide a
notion of event states that abstracts away many of the chal-
lenges of dealing with conflicting behaviors.

These event states build on previous event models [19]
by adding delays and differentiating between requested and
confirmed event firings. Every touch group satisfaction
event has four atomic sub-events (indicated in RED CAPI-

TAL LETTERS in Figure 2): REQUESTED, CONFIRMED,
CANCELLED, and BLOCKED. Every touch group has a cus-
tomizable timeout that specifies how long to wait between
event requests and confirmations and a priority. By de-
fault, every event uses timeout=0 and priority=0, mean-
ing there is no distinction between requests and confirma-
tions. Figure 3 illustrates the sequence of states that single-
tap and double-tap gestures follow.

Event priorities represent a simple way to deal with
many types of conflicts between multi-touch events: if an
event with a higher priority fires, then any lower-priority
requested events are blocked. When event priorities are not
sufficient—for example, if a gesture should be cancelled if
the interface changes state—developers can also use their
own conflict resolution mechanisms by directly calling
.cancel() any time after it has been requested (but before
it has been confirmed). Touch groups also include an
eventGroup property that allows touch groups to be
grouped by event type or target widget. When an event-
Group property is specified, event groups’ priorities only
apply within that group.

One of the most common ways to resolve ambiguities
in two potentially conflicting events is by adding a short de-
lay before firing an event. If this delay is long enough to be
noticeable, the interface should also give intermediate feed-
back for a single tap during the delay period. For example,
in an interface that must disambiguate between a tap and a
long press might display a count-down timer to show how
long the interface will wait before triggering a long press.

Implementing this method of conflict resolution, partic-
ularly while giving users intermediate feedback, is challeng-
ing in standard touch frameworks because of the interac-
tions between timeouts, event listeners, and any intermedi-
ate feedback mechanisms. By contrast, as Figure 3 illus-
trates, managing these conflicts is relatively easy with our
touch group conflict management mechanisms.

3.2.2 Greedy and Non-Greedy Touch Groups. Not all conflict-
ing gestures are temporally separated. For example, in iOS
version 9, a one-finger swipe from the left edge of the
touchscreen pulls out a sidebar and a five-finger swipe from
the left edge of the touchscreen changes the currently exe-
cuted application. Here, the five-finger swipe has a higher

Implementing Multi-Touch Gestures with Touch Groups and Cross Events CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

priority than the one-finger swipe and should thus prevent
the one-finger one from triggering. These conflicts can oc-
cur both in standard touch* frameworks and in touch-
group-based gestures. For example, suppose a developer de-
fines one three-finger touch group (anywhere on the
screen), and three one-finger touch groups (for different
places on the screen). By default, when the user presses
three fingers down in the target areas for the three one-fin-
ger groups, all four event groups will fire, as Figure 4 shows.

In Figure 4, all four touch groups would fire. However,
this is not always the desired interaction between touch
groups. Thus, to allow developers to specify how touch
groups should interact with each other, they include a
“greedy” field that specifies whether a given touch group
should allow other touch groups to use the same fingers as
it uses. Figure 5 illustrates an example of greedy behavior.

The “greedy” property can be used in conjunction with
the event delay feature to resolve many of the common con-
flicts between multi-finger gestures. The delay feature al-
lows touch groups to delay before confirming the event and
wait for another touch group to register.

4 Cross Events

Many multi-touch gestures depend on the path that a user’s
finger takes [9,14,27]. For example, many touchscreen
scrolling interfaces determine if a user’s finger is moving
vertically, horizontally, or diagonally to determine which di-
rection to scroll in. Implementing these behaviors using
only touch move events can be difficult, particularly if the
behavior involves multiple fingers. In fact, many multi-
touch classifiers use machine learning to abstract away
these details [15,16,29]. However, machine learning is error-
prone, requires multiple examples, and can unnecessarily
difficult to use for recognizing common gestures.

Cross events are events that fire when a touch group
(described above) moves across a path that the developer
specifies. Similar ideas have been explored in the context of
end-user interfaces [1] and a less general version for proto-
typing interactions [12].

4.1 Cross Event Options

Cross events have several customizable options in addition
to a touch group and a path. Path cross events also allow
developers to specify the minimum and maximum speeds
(in pixels per second) that a user’s finger must have for that

Figure 3: The sequence of states for single-tap and double-
tap gestures as a user performs a single-tap then a double-
tap. The states and events that are shown here reference
those that are defined in Figure 2. In this example, there are
two instantiations of the state machine: one for single-tap
and one for double-tap. The single-tap gesture uses
timeout=dbl_interval and the double-tap gesture uses
timeout=0. User actions are shown on the left. After the user
performs a single tap, the single-tap event is requested and
confirmed after dbl_interval milliseconds. When the user
performs a double tap, the double-tap event blocks the sin-
gle-tap event, because it has a higher priority.

Figure 2: A state machine showing the various states of a
touch event with priority p. An event can be in three states:
idle, pending fire, or pending block. By default, every event is
in the idle state. When the event fires (a), it enters the pend-
ing state. After enough time (as defined by the timeout pa-
rameter, default:0), the event’s firing is confirmed (b). If the
event firing is cancelled before the timeout interval passes,
then the event is cancelled (c). If a higher priority event is
requested before the timeout interval passes, then the event
moves to the pending block stage (f). If any other event with
a higher priority is confirmed, then the event is blocked (d).
If all the events with a higher priority are cancelled, then
the event will return to the pending fire state (g). If the event
times out while in the “pending block” state, then the event
is blocked (e) and does not fire.

CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK Steve Oney, Rebecca Krosnick, Joel Brandt, Brad Myers

cross event to fire. For example, a cross event defining swipe
gesture might require that a user’s finger is travelling with
sufficient velocity to fire. By default, both the minimum and
maximum speed parameters are false, meaning that the
cross event will fire at any speed.

4.2 Dynamic Paths

The meaning of a given touch gesture often depends on the
position of UI elements [3], device-specific variables (such
as dimensions), and the position of other fingers. Thus, cross
events allow developers to use custom, dynamic paths that
are computed using other context. Enabling these paths to
be dynamic allows developers to define events relative to
other interface elements or touch event locations. For exam-
ple, in determining if a user is swiping left or right with two
fingers, the developer can define a two-finger touch group
and define (hidden) lines immediately to the left and right
of where those fingers start. If the touch group crosses ei-
ther of those lines, either the left or right cross event fires,
depending on the swipe direction. A developer can also
specify that a press and hold gesture should be aborted if the
user moves their finger too far. They can define “too far” by
computing a circle around where a touch group starts and
when a cross event fires (meaning that the user’s finger
moved outside of the circle boundary), transitioning the ges-
ture back to the default state.

5 User Evaluation of Readability

We performed two studies of touch groups and cross events
relative to touch* events. The first study focused on under-
standability and the second study (described in section 6) on
writability. In the first user study, our goal was to evaluate
the understandability of the events themselves, so we used

textual representations for the touch groups, cross events,
and touch* events.

5.1 User Evaluation Setup

We recruited 18 participants who all had programming ex-
perience. We asked participants to read the code for multi-
touch behaviors and asked them to specify which gesture
that code implements. As Figure 6 and Figure 7 illustrate,
participants selected one of four options for every imple-
mentation. Each option contained a brief description of the
behavior and an animation of example touch sequences that
activated the behavior. At the start of the study, we asked
participants to complete a demographic questionnaire.

We used a within-subjects design where every partici-
pant was given 10 touch* implementations and 10 touch
group/cross event implementations. The specified imple-
mentations and multiple-choice options were randomized
per-participant. Participants were given a short tutorial ex-
plaining how both paradigms worked. To account for learn-
ing effects, we randomized the order of implementations
that participants used. Each study lasted approximately one
hour (30 minutes per implementation).
3.2.2 Controlling for External Factors. To ensure that the
multi-touch behaviors we used were representative, we
chose four dimensions along which we varied our behav-
iors. Our dimensions are based on prior work [9,30]:
• Standard vs. custom: “standard” gestures to be multi-

touch gestures that are currently widespread, as op-
posed to “custom” gestures. We define “widespread” to
mean that they are implemented as built-ins in either
the iOS or Android gesture recognizers. For example,
standard gestures include pinch to zoom and
press+hold.

• Discrete vs. continuous: “discrete” gestures have a single
output whereas “continuous” gestures have a start and

Figure 5: Like in Figure 4, here the developer has defined one
three-finger touch group and three one-finger touch groups.
However, the developer has specified that the three-finger
touch group should be “greedy”, so that other touch groups
should not fire with any of the touches used. In this case,
when the user presses three fingers down, only the three-
finger touch group will fire.

Figure 4: The default, “non-greedy” behavior for touch
groups is that every touch group can claim the same fingers.
For instance, suppose a developer defines one three-finger
touch group and three one-finger touch groups across dif-
ferent elements in an interface. With non-greedy behavior,
when the user presses three fingers down, all four touch
group activation events would fire.

Implementing Multi-Touch Gestures with Touch Groups and Cross Events CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

end. For example, a tap is a discrete gesture and a scroll
is a continuous gesture.

• Static vs. dynamic: “static” gestures do not involve fin-
ger movement along x or y coordinates or in the “third-
dimension” (such as pressure), whereas “dynamic” ges-
tures rely on the path fingers take. Thus, press+hold
gesture is static whereas a right-swipe is dynamic.

• One-finger vs. multi-finger: “one-finger” gestures in-
volve one touch at a time whereas “multi-finger” ges-
tures involve multiple fingers moving in synchrony. A
right-swipe is a one-finger gesture whereas a two-fin-
ger swipe right (Figure 1) is a multi-finger gesture.

We implemented at least one instance of every permu-
tation of these four dimensions (for example, tap and
press+hold are standard/discrete/static/one-finger). In total,

we implemented 20 behaviors. For each behavior, we imple-
mented a touch* version and a group/cross version for a to-
tal of 40 implementations. Although gestures that are both
static and continuous are relatively uncommon, we used
pressure-sensitive gestures (also known as “force touch”) in
our user study. Our gesture implementations had an average
length of 54 lines for touch* implementations and 47.5 lines
for touch group/cross event implementations. The relatively
small difference (6 lines) in length illustrates that touch*
code is difficult to understand because users find it hard to
follow the control flow, not because it is overly verbose.

To ensure that our implementations of the touch* be-
haviors in code were representative, we hired a third-party
developer to implement them and we asked another profes-
sional developer to refactor any parts of our implementa-
tions that they thought were unclear. We also asked them
to ensure that variable names were clear and were similar

Figure 6: Participants were given the code for a multi-touch
behavior. In this example, the code implements a “tap” ges-
ture. To gauge their understanding of the code, they were
asked to select which behavior that code implemented, from
the four choices at the bottom. Participants were given ten
behaviors in one implementation (either touch* or touch
groups/cross events) and then ten using the other imple-
mentation. We randomized the implemented behaviors,
multiple choice options, and multiple-choice ordering.

Figure 7: The same (“tap”) behavior as Figure 6, implemented
with cross events touch groups. In addition to being more
concise than the touch* implementation of the same ges-
ture, many modifications to this gesture that would require
significant changes to the touch* implementation are
straightforward. For example, changing this gesture from a
one-finger tap to a two-finger tap requires significant
changes to the touch* implementation but is a one-line
change in the touch group/cross event implementation (up-
dating the second line to numFingers: 2). Using correctness
in this task as a measure of understanding, participants
were better able to understand code written with touch
groups and cross events than with touch* events.

CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK Steve Oney, Rebecca Krosnick, Joel Brandt, Brad Myers

between implementations, and that no variable name gave
away the answer.

Finally, to ensure that participants read and attempt to
understand every implementation’s code (as opposed to
looking at the four multiple-choice options and answering
by elimination) we added a 30 second delay before the mul-
tiple-choice options appeared. Thus, participants were re-
quired to read and attempt to understand the behavior im-
plementation before selecting any answers.

5.2 Results

Our quantitative results are shown in Table 1. Participants
were able to understand a higher percentage of behaviors in
less time when those behaviors were implemented with
touch groups and cross events than when they were imple-
mented with touch* events. With touch* events (“control”),
participants correctly answered 53.3% (stdev 0.235m) of the
questions in an average of 2.41 minutes per question (stdev
0.97m). With touch groups and cross events, participants
correctly answered 68.0% (sample stdev 0.201) of the ques-
tions in an average of 1.95 minutes per question (stdev 0.57).
A pair-wise two-tailed t-test showed that participants were
significantly faster (p=0.035) and had significantly more cor-
rect answers (p= 0.013) when reading the touch group and
cross event implementation than the standard multi-touch
programming framework.

We observed benefits across every type of gesture, as
Table 1 shows, including statistically significant differences
in custom, discrete, dynamic, and multi-finger touch ges-
tures. In Table 1, better than average results are shaded in
green and worse than average results are shaded in orange.
Statistically significant differences are represented with
* (p<0.05) or ** (p<0.01) in a two-tailed paired t-test.

As the “setup” section above describes, participants
spent at least 30 seconds reading code before they could

select an option. This means that the minimum possible time
for either condition was 30 seconds*10 tasks = 5 minutes.
Thus, participants did spend time evaluating the multiple-
choice options and reading the behavior implementations
after the required 30 seconds.

To gain more insight into participants’ thought pro-
cesses when reading both implementations, we gave every
participant a post-study questionnaire. From these re-
sponses, a few commonalities emerged. According to partic-
ipants, touch groups and cross events were a higher-level
abstraction that they found helpful:

“This [touch group + cross event] implementation is a level of
abstraction higher than the [touch*] implementation, which
makes the code much more regular and easy to read. Once you
understand the flow of create a [group], draw a shape, and re-
spond to touch events, then each gesture is easy to get through
quickly. This implementation also seems more conductive to
good practices than the [touch*] implementation.”
(P11, prior UI programming experience: intermediate)

“It breaks the variables and functions out with better natural
language for the user and is pretty intuitive to understand.”
(P3, prior UI programming experience: limited)

Participants also expressed that although touch* events
were easy to understand in theory, they are difficult to com-
prehend in actual behavior implementations:

“[the touch* implementation] was easier to understand on paper
but difficult to comprehend in code.”
(P2, prior UI programming experience: basic)

“[The touch* implementation] loads a lot of information into the
three functions, so it can often be difficult to read and under-
stand quickly. Event handlers like that are just generally kind of
a mess to read.”
(P3, prior UI programming experience: limited)

 Standard Custom Discrete Continuous Static Dynamic 1-Finger Multi-Finger OVERALL

Control

time (mins) 2.17 2.59 2.40 2.40 2.31 2.69 2.49 2.33 2.41

stdev ± 0.72 ± 1.25 ± 1.02 ± 1.24 ± 0.92 ± 1.20 ± 1.17 ± 0.95 ± 0.97

correct of 10 5.08 5.47 5.32 5.34 5.72 4.26 5.64 5.03 5.33

stdev ± 2.57 ± 2.37 ± 2.47 ± 3.38 ± 2.86 ± 2.81 ± 2.57 ± 2.93 ± 2.35

Group+

Cross

time (mins) 1.92 1.94 2.06 1.94 2.09 2.02 2.02 1.87 1.95

stdev ± 1.26 ± 0.84 ± 0.95 ± 1.39 ± 1.59 ± 0.79 ± 1.10 ± 0.79 ± 0.95

correct of 10 7.47 6.23 6.30 7.39 6.74 7.24 6.19 7.32 6.80

stdev ± 1.92 ± 2.80 ± 2.71 ± 2.30 ± 2.20 ± 2.79 ± 2.98 ± 2.52 ± 2.01

Difference
time (mins) -0.25 -0.65* -0.35** -0.47 -0.22 -0.67* -0.47 -0.47* -0.46*

correct of 10 +2.39 +0.76* +0.98** +2.05 +1.01 +2.99* +0.54 +2.30* +1.47*

Table 1: This table summarizes the user study results broken down by gesture type (green cells represent a better performance
than the overall average and orange cells represent a worse performance than the overall average). We focus on two options
in each of four categories: standard or custom, discrete or continuous, static or dynamic, and 1-finger or multi-finger. Thus,
each gesture fell into one of 24=16 types. We found consistent performance gains in nearly every category for gestures im-
plemented with touch groups and cross events. Performance gains were also especially high for multi-fingered and dynamic
gestures, both of which averaged significantly more correct answers in significantly less time in the touch group+cross event
conditions. We found that overall, participants using cross events and touch groups were able to complete significantly more
tasks in significantly less time. * denotes p<0.05 ** denotes p<0.01 in a two-tailed paired t-test.

Implementing Multi-Touch Gestures with Touch Groups and Cross Events CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

5.3 Discussion

As our post-study survey indicates, participants were more
favorable towards touch groups and cross events than they
were towards touch* implementations. Further, quantitative
results from our studies also indicate that, in practice, pro-
grammers are better able to understand gestures written
with touch groups and cross events as well.

To put our results into perspective, most participants
had little to no experience programming user interface code
and only intermediate programming experience. Although
our average gesture implementation was only slightly over
50 lines of code, interactions between callbacks (in both con-
ditions) make understanding this kind of code difficult.
Thus, although there is still room for improvement, a suc-
cess rate of 68% vs. 53.3% for conventional code shows the
promise of the touch primitives that this paper introduces.

Still, it is important to note their scope: our evaluation
only studied the understandability of the events themselves,
as opposed to visual representations for the events or other
aspects (such as the event conflict resolution mechanisms
and their expressiveness). Therefore, we performed another
study to test the success of users writing complete touch ges-
tures in ours vs. a conventional environment.

6 User Evaluation of Writability

Our second user study evaluates how easily programmers
can write custom gestures using touch groups and cross
events relative to touch* events. We studied touch groups
and cross events in two settings: textual (JavaScript) code
and a GUI interface based on the InterState UI [23].

6.1 User Evaluation Setup

We recruited an additional 10 participants who all had UI
programming experience. We used a within-subjects design.
Every participant was asked to implement three behaviors:
a three-finger press+hold gesture, a one-finger “L”-shaped
swipe (down then to the right) gesture, and a multi-part ges-
ture where the user places down two fingers and taps a third
finger (similar to how custom menus are invoked in some
touchscreen applications). Every participant implemented
each behavior in either:

• JavaScript code with touch* events
• JavaScript code with touch groups + cross events
• A GUI interface with touch groups + cross events. The

GUI was based on the InterState programming UI [23].
In this GUI, participants defined state machines to spec-
ify the touch behaviors (see Figure 8).

We randomized which behavior was paired with which
implementation and the order. All participants were also
given three brief tutorials (10–15 minutes each) on how to
use each of these implementation tools, and we gave partic-
ipants a maximum 20 minutes per task. None of our partic-
ipants had participated in the prior readability study.

6.2 Results

In order to analyze our results, we used not only partici-
pants’ completion times but we also developed a rubric to
measure participants’ accuracy. The rubric includes items
corresponding to the gesture behavior requirements we de-
scribed to participants, and all items contribute equally to
the accuracy percentages reported below. We applied the
same rubric across all implementation conditions to ensure
consistency. As Table 2 shows, participants in both Group +
Cross conditions outperformed participants in the Touch-*
control condition—both in time taken and in accuracy. How-
ever, although the averages show promise, our results were
not statistically significant in a two-tailed t-test. We believe
this is largely because of high variance across participants
in how long a given programming task takes.

In a post-test survey, we found that participants felt
that the touch group + cross event mechanism was easy to
learn: participants agreed 6.3/7 (Agree) that learning to use
the touch group + cross event GUI was easy and 5.4/7
(Mildly agree) that it was easy to learn to use touch groups

Touch-* in

JavaScript

Group+Cross

in JavaScript

Group+Cross

GUI

time (m) 18.88 ± 2.97 16.11 ± 4.64 13.55 ± 6.52

accuracy 51.0% ± 38% 59.26% ± 46% 74.1% ± 43%

p (time) - 0.0685 0.0708

Table 2: The average time taken (in minutes) and accuracy
(as a percentage) of participants’ implementations. The last
row shows the results of a pairwise two-tailed t-test relative
to the touch-* condition.

Figure 8: An example of the UI for defining behaviors in the
GUI / touch group + cross event condition via a state ma-
chine. The black dot symbolizes the start state. Small light
squares symbolize states. The larger grey squares specify
transition events (e.g., cross events or touch group events).

CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK Steve Oney, Rebecca Krosnick, Joel Brandt, Brad Myers

+ cross events in JavaScript code. We also interviewed par-
ticipants after the study. According to participants, touch
groups and cross events were intuitive:

“The ability to specify the path to say exactly where you want
the event to actually cross was helpful, instead of trying to cal-
culate it yourself. Just be able to make a circle, to make an event
handler for crossing that line, instead of trying to calculate
where those points were and where they are now. And it’s nice
that the circle can update its position based on the object.”
(P19, UI programming experience: 2–3 years)

6.3 Discussion

Overall, our two studies (the readability study with less ex-
perienced programmers and the writability study with more
experienced programmers) both indicate that touch groups
and cross events could be effective in simplifying touch ges-
ture programming.

In the writability study, some participants were con-
fused about exactly when a particular touch group would be
active, especially when multiple touch groups existed; this
is due in part to our tutorial not explaining all touch group
configurable parameters and what the default settings were.

7 Touch Gesture Examples

Although our two user studies indicate the usability of
touch groups and cross events, it is also important that these
primitives are capable of expressing realistic novel touch
gestures. To illustrate the expressiveness of these multi-
touch constructs, we implemented several examples of

custom multi-touch gestures from prior HCI literature
[2,24,28]. We used touch groups and cross events in Inter-
State [23] to implement each of these example gestures.

7.1 Pressure-Sensitive Gestures

Rendl et al. proposed two sets of pressure-sensitive multi-
touch gestures for pressure-sensitive trackpads [24]. The
first set of gestures is illustrated in Figure 9. We imple-
mented this behavior with three touch groups: two for the
two two-finger gestures and one for the three-finger resize
gesture. To disambiguate between them, the three-finger
touch group is “greedy”, meaning it the two-finger touch
groups do not fire when the three-finger group is active. The
two-finger group for moving the viewport also specifies a
minimum pressure and is “greedy”, meaning that when it
activates, it prevents the light two-finger scrolling gesture.

Rendl et al.’s second proposed gesture set helps users
perform modifications to text documents, which Figure 10
illustrates. In our implementation, we used four touch
groups and six cross events. The heavy one-finger press to
initiate commands is represented with a one-finger greedy
touch group, with downInside set to a rectangle in the top
quartile of the trackpad. When this touch group is satisfied,
the gesture enters “command” mode and listens for one of
three defined commands: text selection, enumeration, or in-
dentation. Each of these commands is initiated when a sec-
ond touch group moves sufficiently either vertically or hor-
izontally (as specified by a cross event).

Figure 9: An illustration of a set of pressure-sensitive track-
pad gestures. When the user presses three fingers on the
trackpad, the selected window resizes in response (yellow,
top right). When the user presses with two fingers, the view-
port scrolls (blue, bottom left) or the window moves (red,
bottom right) depending on the finger pressure. Our imple-
mentation manages conflicts between these three gestures
and standard one-finger touches (grey, top left).

resize window with
three fingers

move window with
two-finger hard press

scroll viewport with
two-finger light press

one-finger touches
work normally

Figure 10: An illustration of three gestures for pressure-sen-
sitive trackpads that manipulate text. Here, the user initi-
ates “command mode” with a heavy (high pressure) one-fin-
ger press in the top left quadrant of the trackpad. As the
user holds that finger down, they can perform a light (low
pressure) one-finger vertical scroll gesture to select text
(top), a heavy two-finger gesture to enumerate the selected
text (middle), or a light two-finger scroll gesture to specify
the selected text’s indentation (bottom). The paths that spec-
ify cross events that initiate the gesture are shown in red.

Implementing Multi-Touch Gestures with Touch Groups and Cross Events CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

7.2 HandMark Menus

HandMark menus are contextual menus that appear when a
user presses a multi-touch screen with either two or five fin-
gers [28]. Uddin et al. propose two versions of HandMark
gestures: one invoked with two fingers and one invoked
with five fingers. Figure 11 illustrates both versions.

We implemented both versions of HandMark menus.
Each implementation uses two touch groups; one for the
multi-finger menu invocation and one for item selection.
Icons’ locations are specified by constraints relative to each
finger’s location. By implementing these gestures using
touch groups, implementing the five-finger invocation re-
quired modifying only three equations from the two-finger
invocation (two to update the icons’ x and y positions and
one to change the number of fingers in the touch group).

7.3 Pie Menus

Banovic et al. proposed three alternative designs for pie con-
textual menus [2], as Figure 12 illustrates. These three de-
signs differ in how they are invoked: by a one-finger press
and hold, a one-finger tap, and a one-finger double-tap. As
in HandMark menus, the menu invocation is accomplished
with a one-finger touch group. The location of every icon is
specified with a constraint relative to the position of that
touch group.

8 Scope and Limitations

Touch groups contain a superset of touch-* events, meaning
that any GUI behavior can be expressed with touch-* events
could be expressed with touch groups (one could define a

one-finger touch group). However, touch groups are more
useful when the fingers they contain move in synchrony.
When an individual finger's motion is important, it is best
defined in its own touch group.

Our implementation of cross events was not designed
for highly “path-specific” gestures, such as shape recogni-
tion. For example, a handwriting gesture might specify that
a phone’s camera should open when a user draws a “C” on
the touchscreen. For these types of gestures, we believe a
machine-learned classifier is likely still the best tool for
building a gesture recognizer [15,29]. We are exploring
whether path crossing events might help developers under-
stand machine-learned path-specific behaviors. In the cam-
era example above, a handwriting classifier might generate
a series of paths in the shape of a “C” and specify that if a
touch group crosses over 80% of those paths in the correct
order, the “camera” event should fire.

9 Conclusion

We presented touch groups and cross events as mechanisms
for defining custom multi-touch gestures. We found that
these primitives can implement nuanced custom multi-
touch behaviors. Our user evaluation and our experience
with using them to implement many gestural behaviors
found that multi-touch behaviors implemented with touch
groups and cross events are more understandable than those
implemented using a standard multi-touch framework.

ACKNOWLEDGMENTS
We thank Tami Van-Omen for her work implementing
touch gestures for the readability study and participants
from both of our studies for their valuable feedback. Fund-
ing for this research comes from Adobe and from NSF grant
IIS-1116724. Any opinions, findings, and conclusions or rec-
ommendations are those of the authors and do not neces-
sarily reflect those of any of the sponsors.

Figure 11: An illustration of HandMark menus. HandMark
menus are contextual menus that a user invokes with a
multi-finger gesture. We implemented two different version
of hand-mark menus. In the two-finger version (left) the
user invokes a context menu by pressing with two fingers.
As the user moves their two fingers, the menu follows. The
user can then use a third finger to select a single item. In the
five-finger version (right), users invoke the context menu by
pressing the touchscreen with five fingers. Menu items then
follow the individual fingers as they move. Users can use a
sixth finger to select a menu item.

Figure 12: An illustration of a custom contextual pie menu
for touchscreen devices. We created three implementations
with minimal changes to the gesture’s implementation: 1)
the user holds their finger then selects a menu item, 2) the
user taps their finger then selects a menu item, or 3) the user
double taps their finger then selects a menu item.

REFERENCES
[1] Johnny Accot and Shumin Zhai. 2002. More than dotting the

i’s — Foundations for crossing-based interfaces. CHI, 1: 73.
https://doi.org/10.1145/503387.503390

[2] Nikola Banovic, Frank Chun Yat Li, David Dearman, Koji
Yatani, and Khai N Truong. 2011. Design of Unimanual
Multi-finger Pie Menu Interaction. In Proceedings of the
ACM International Conference on Interactive Tabletops and
Surfaces (ITS ’11), 120–129.
https://doi.org/10.1145/2076354.2076378

[3] Stéphane Conversy, Eric Barboni, David Navarre, and
Philippe Palanque. 2008. Improving modularity of
interactive software with the MDPC architecture. In
Engineering Interactive Systems. 321–338.

[4] Dafydd Gibbon, Ulrike Gut, Benjamin Hell, and Karin
Looks. 2003. A computational model of arm gestures in
conversation. Interspeech.

[5] Daniela Grijincu and Miguel Nacenta. 2014. User-defined
Interface Gestures : Dataset and Analysis. In ITS, 25–34.

[6] Lode Hoste and Beat Signer. 2014. Criteria, Challenges and
Opportunities for Gesture Programming Languages. In
International Workshop on Engineering Gestures for
Multimodal Interfaces (EGMI), 22–29.

[7] Dietrich Kammer, Ingmar Franke, Juliane Steinhauf, and
Maxi Kirchner. 2011. The Eleventh Finger: Levels of
Manipulation in Multi-touch Interaction. In ECCE, 24–26.

[8] Dietrich Kammer, Dana Henkens, and Rainer Groh. 2012.
GeForMTjs : A JavaScript Library Based on a Domain
Specific Language for Multi-touch Gestures. In ICWE, 444–
447.

[9] Dietrich Kammer, Mandy Keck, and Rainer Groh. 2014.
Towards a Periodic Table of Gestural Interaction. In EGMI.

[10] Dietrich Kammer, Jan Wojdziak, Mandy Keck, Rainer Groh,
and Severin Taranko. 2010. Towards a Formalization of
Multi-touch Gestures. In ITS, 49–58.
https://doi.org/10.1145/1936652.1936662

[11] Shahedul Huq Khandkar and Frank Maurer. 2010. A domain
specific language to define gestures for multi-touch
applications. Proceedings of the 10th Workshop on Domain-
Specific Modeling - DSM ’10: 1.
https://doi.org/10.1145/2060329.2060339

[12] Ju-whan Kim and Tek-jin Nam. 2013. EventHurdle:
Supporting Designers’ Exploratory Interaction Prototyping
with Gesture- Based Sensors. In CHI, 267–276.

[13] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh
Agrawala. 2012. Proton++: A Customizable Declarative
Multitouch Framework. In UIST, 477–486.

[14] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh
Agrawala. 2012. Proton: Multitouch Gestures as Regular
Expressions. In CHI, 2885–2894.

[15] Hao Lü, James Fogarty, and Yang Li. 2014. Gesture Script:
Recognizing Gestures and their Structure using Rendering
Scripts and Interactively Trained Parts. In CHI, 1685–1694.

[16] Hao Lü and Yang Li. 2012. Gesture Coder: A Tool for
Programming Multi-Touch Gestures by Demonstration. In

CHI, 2875–2884.
[17] Yuexing Luo and Daniel Vogel. 2014. Crossing-based

Selection with Direct Touch Input. In ACM CHI Conference
on Human Factors in Computing Systems, 2627–2636.
https://doi.org/10.1145/2556288.2557397

[18] Yuexing Luo and Daniel Vogel. 2015. Pin-And-Cross: A
Unimanual Multitouch Technique Combining Static
Touches with Crossing Selection. In ACM UIST Symposium
on User Interface Software & Technology, 323–332.
https://doi.org/10.1145/2807442.2807444

[19] Brad a. Myers. 1990. A new model for handling input. ACM
Transactions on Information Systems 8, 3: 289–320.
https://doi.org/10.1145/98188.98204

[20] Brad A Myers, Andrew J Ko, Thomas D LaToza, and
YoungSeok Yoon. 2016. Programmers Are Users Too:
Human-Centered Methods for Improving Programming
Tools. Computer 49, 7: 44–52.

[21] Brad A Myers, John F Pane, and Andy Ko. 2004. Natural
Programming Languages and Environments. Commun.
ACM 47, 9: 47–52. https://doi.org/10.1145/1015864.1015888

[22] Miguel Nacenta, Yemliha Kamber, Yizhou Qiang, and Per
Ola Kristensson. 2013. Memorability of Pre-designed and
User-defined Gesture Sets. In CHI, 1099–1108.
https://doi.org/10.1145/2470654.2466142

[23] Stephen Oney, Brad Myers, and Joel Brandt. 2014.
InterState: A Language and Environment for Expressing
Interface Behavior. In UIST, 263–272.

[24] Christian Rendl, Patrick Greindl, Kathrin Probst, Martin
Behrens, and Michael Haller. 2014. Presstures: Exploring
Pressure-sensitive Multi-touch Gestures on Trackpads. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14), 431–434.
https://doi.org/10.1145/2556288.2557146

[25] Dean Harris Rubine. 1991. The Automatic Recognition of
Gestures. Carnegie Mellon University.

[26] Christophe Scholliers, Lode Hoste, Beat Signer, and
Wolfgang De Meuter. 2011. Midas : A Declarative Multi-
Touch Interaction Framework. In TEI, 49–56.

[27] Lucio Davide Spano, Antonio Cisternino, Fabio Paternò,
and Gianni Fenu. 2013. GestIT: A Declarative and
Compositional Framework for Multiplatform Gesture
Definition. Eics: 187–196.
https://doi.org/10.1145/2494603.2480307

[28] Md. Sami Uddin, Carl Gutwin, and Benjamin Lafreniere.
2016. HandMark Menus: Rapid Command Selection and
Large Command Sets on Multi-Touch Displays. Proceedings
of the 2016 CHI Conference on Human Factors in Computing
Systems: 5836–5848.
https://doi.org/10.1145/2858036.2858211

[29] Jacob Wobbrock, Mary Gates Hall, and Andrew Wilson.
2007. Gestures without Libraries, Toolkits or Training: A $1
Recognizer for User Interface Prototypes. In UIST, 159–168.

[30] Jacob Wobbrock, Meredith Ringel Morris, and Andrew
Wilson. 2009. User-Defined Gestures for Surface
Computing. In CHI, 1083–1092.

