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ABSTRACT 
Many web pages developed today require navigation by vi-
sual interaction—seeing, hovering, pointing, clicking, and 
dragging with the mouse over dynamic page content. These 
forms of interaction are increasingly popular as developer 
trends have moved from static, linearly structured pages to 
dynamic, interactive pages. However, they are also often in-
accessible to blind web users who tend to rely on keyboard-
based screen readers to navigate the web. Despite exist-
ing web accessibility standards, engineering web pages to be 
equally accessible via both keyboard and visuomotor mouse-
based interactions is often not a priority for developers. Im-
proving access to this kind of visual, interactive web content 
has been a long-standing goal of HCI researchers, but the ob-
stacles have exceeded the many proposed solutions: promot-
ing developer best practices, automatically generating acces-
sible versions of existing web pages, and sighted-guides, such 
as screen and cursor-sharing, which tend to diminish the end 
user’s agency and privacy. In this paper, we present a collabo-
rative approach to helping blind web users overcome inacces-
sible parts of existing web pages. We introduce Arboretum, 
a new architecture that enables any web user to seamlessly 
hand off controlled parts of their browsing session to remote 
users, while maintaining control over the interface via a “pro-
pose and accept/reject” mechanism. We illustrate the beneft 
of Arboretum by using it to implement Arbility, a browser that 
allows blind users to hand off targeted visual interaction tasks 
to remote crowd workers without forfeiting agency. We eval-
uate the entire system in a study with nine blind web users, 
showing that Arbility allows blind users to access web content 
that was previously inaccessible via a screen reader alone. 
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Figure 1. Arbility allows blind end users to interact with web page 
elements that are otherwise inaccessible via a screen reader. Here a 
blind end user would like to place a food order a day in advance, but 
the restaurant’s calendar web page is not accessible because it requires 
interacting with elements that are not keyboard-focusable and the inter-
action is listening for a mousedown event (rather than click), which 
not every screen reader application fres. Arbility allows the end user to 
hand off this targeted visual interaction task to a sighted crowd worker 
via the chat panel. The crowd worker interacts with the calendar page to 
select the end user’s desired order date, and Arbility sends the worker’s 
proposed action to the end user, who optionally accepts or rejects it. 
Throughout the task, the crowd worker interacts with a mirrored ver-
sion of the end user’s web page. 

INTRODUCTION 
The World Wide Web (web) is a crucial resource for connect-
ing people with services, information, and other people. For 
more than 39 million [52] blind people worldwide, however, 
many parts of the web are off-limits [15]. Most blind web 
users rely on keyboard navigation and screen readers, which 
convert textual web content into an accessible format (typi-
cally speech or Braille) [18]. However, many websites are 
designed for visual interaction; performing a task requires 
seeing, clicking, or dragging over dynamic visual content. 
Seemingly innocuous design decisions, like conveying infor-
mation visually (e.g., color coding), not including Accessible 
Rich Internet Application (ARIA) labels, and requiring certain 
types of mouse-based interaction, can make sites diffcult or 
even impossible for blind people to use [15, 44]. 

Engineering for accessibility is challenging, and improving 
access to web content for blind users is a long-standing prob-
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lem in HCI. Researchers have proposed automated techniques 
to help guide blind users, such as enabling Natural Language 
(NL) control of browsing tasks [3] or automatically generating 
text labels [32]. However, accessibility issues are too varied 
to be fully solved by automated tools [15]. Similarly, sys-
tems that rely on user-created macros require them to be made 
in advance, limiting their usefulness for new or personalized 
tasks [14, 45]. The most reliable way to overcome accessi-
bility barriers is with help from a sighted user for targeted 
portions of the task, but in-person help from sighted friends 
or coworkers is neither always available nor desirable. 

Seeking assistance from sighted users for such targeted web 
tasks would normally be squarely in the realm of crowdsourc-
ing [59] and hybrid-intelligence [9, 40] tools, which have 
both addressed similar accessibility problems [12, 20, 42, 
65]. However, crowdsourcing is currently not feasible for 
web tasks because it is diffcult to share browsing state and 
safely give controlled access to remote crowd workers. For 
example, sharing a link by copying and pasting does not cap-
ture the page state or personalized pages (such as tasks that 
involve logging in at some stage), while remote access tools 
like VNC require giving “all or nothing” screen or cursor con-
trol to the remote user. 

In order to make controlled, stateful sharing possible, we 
introduce Arboretum, a new shared web architecture that 
makes it possible to seamlessly hand off controlled access to 
nearly any web browsing session and state. This would, for 
example, allow blind users to share their browsing context 
with a remote sighted user to ask a question about a visual 
element. Many accessibility barriers involve performing vi-
siomotor tasks on the problematic page. For example, some 
information on a page might only be revealed after the end 
user moves their mouse over an element. 

Toward this end, we also introduce Arbility, a web browser 
that builds on Arboretum to allow blind users to hand off tar-
geted visual interaction tasks (tasks that involve seeing or spa-
tial interaction) to crowd workers. When remote crowd work-
ers join an Arbility browsing session, they can see the end 
user’s exact context and can communicate with them in natu-
ral language through a chat interface. Arbility allows crowd 
workers to “propose” actions to the end user by demonstrat-
ing them, as Figure 1 illustrates. For example, a crowd worker 
can propose to mouseover a menu element by simply mov-
ing their mouse over the element on the mirrored page. End 
users can also request ARIA labels from crowd workers for 
particular elements. Further, by storing past accepted actions, 
Arbility allows end users to re-use the page labels and actions 
proposed by crowd workers the next time they visit that page. 

We make the following contributions with this work: 

1. Arboretum, a shared web browser architecture for cre-
ating applications that can seamlessly hand off browsing
state to remote users.

2. Arbility, a web browser that uses the Arboretum architec-
ture to allow blind end users to request help from crowd
workers for targeted visual interaction tasks. Arbility con-
tains several novel features to enable effective communica-

tion between the blind end user and remote crowd workers. 
These features include allowing crowd workers to propose 
page actions, the ability to reference page content in chat 
messages from crowd workers, a feature that allows crowd 
workers to label unlabeled page elements, and allowing 
blind end users to re-use labels and actions generated by 
crowd workers. 

3. An evaluation with nine blind participants on three inac-
cessible web pages showing that Arbility enables them to
leverage crowdsourcing to perform tasks on these pages
that would have otherwise been diffcult, if not impossi-
ble. This evaluation also shed light on important design
challenges for future work to address — most notably in
dealing with privacy concerns.

We distinguish between the Arboretum architecture and the 
Arbility tool because Arboretum has many potential applica-
tions outside of accessibility, as we will describe. Arboretum 
opens up many exciting opportunities for applying crowd-
sourcing techniques to web tasks. Arboretum is publicly 
available as an extensible open source platform1. 

RELATED WORK 
Arbility and Arboretum build on research from three vibrant 
areas: multi-user/multi-device web browsing, end-user web 
scripting and automation, and crowdsourced control of in-
terfaces, with application to web accessibility for blind and 
low-vision end users. 

Multi-User/Multi-Device Web Browsing 
Early work by Greenberg and Roseman [24] explored ways of 
extending web browsers with groupware features to support 
co-browsing based on synchronized document views and tele-
pointers. Researchers have also studied specifc co-browsing 
interfaces for common web activities, including web search 
in both co-located [4] and remote [49] settings. A com-
mon approach is to implement “master-slave” functionality 
in which all interactions of one user who controls a ses-
sion are mirrored for other users who are forced to follow 
along. Surfy [63] is a modern implementation of this in 
the form of a co-browsing web service combined with a dis-
cussion interface. Heinrich et al. also showed how elements 
of generic single-user web pages can be automatically con-
verted to shared applications [28], with a focus on making 
editable text boxes sharable. Another common approach is 
to allow users to use a divide-and-conquer strategy by split-
ting up web pages and focusing their work on parts of the 
collaborative web activity. WebSplitter [26] was an early sys-
tem that could split a web page among multiple users and de-
vices. Research has then extensively studied sequential and 
parallel web browsing on multiple devices via multibrowsing 
support [33] and migratory interfaces [8] that allow users to 
easily switch and transfer (parts of) web tasks between de-
vices. Apple’s Continuity features, such as Handoff [6], are 
modern implementations of this on Mac OS and iOS devices. 
More recent systems such as MultiMasher [30] and Web-
strates [36] provide architectural support and visual tools for 
“mashing up” and re-authoring existing web applications for 
1https://github.com/soney/arboretum 
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a wide variety of multi-user/multi-device shared web brows-
ing scenarios. Finally, Subspace [61], PolyChrome [7], XD-
Browser [50], and others [54, 51] can distribute web pages 
between devices while keeping the view and input states syn-
chronized between multiple browser nodes. However, previ-
ous work does not enable controlled hand-offs of third-party 
content, as Arboretum does. 

Synchronous interaction can greatly improve user satisfac-
tion during customer service interactions as well. As For-
rester fnds in a 2011 study [34], “Live-assist communica-
tion channels (phone, chat, cobrowse) have much higher 
satisfaction ratings than asynchronous electronic channels 
(email, web self-service).” They found satisfaction rat-
ings of: “phone (74%), chat (69%), cobrowse (78%), 
email (54%), and web self-service (47%).” Their high-
est satisfaction ratings were seen with “cobrowsing” (e.g., 
https://www.olark.com/help/cobrowsing), which is conceptu-
ally similar to our approach, but highly specialized to individ-
ual web sites, requiring that web developers use proprietary 
frameworks in their implementation. In contrast, Arboretum 
works on any website without any special accommodations 
from site developers. Users simply access the web using Ar-
boretum as they would through their regular web browser. 

Web Accessibility Standards and Solutions 
People with disabilities, such as motor or visual impairments, 
face signifcant diffculties accessing the web when compared 
to most other users because of the web’s reliance on visual 
layout and small interaction targets (e.g., in-text URLs and 
drop-down menus). Existing access technology does not pro-
vide an equivalent web browsing experience. Screen read-
ers convert textual content to speech for visually impaired 
users [11], but are tedious to use because users are often-
times forced to traverse the Document Object Model (DOM) 
linearly, one element at a time. Blind end users might use nav-
igational shortcuts (such as locating content on a web page 
using Ctrl+F or quickly scrolling through the heading levels 
of the DOM), but such strategies must be variously deployed, 
since no single strategy has any guarantee of success. 

Given the diversity of web development paradigms and the 
Web 2.0 trend toward dynamic and interactive content, a web-
site’s DOM is by no means structured to be parsed linearly 
by end users. In response to these trends toward visually 
dynamic—and hence, inaccessible—content, the World Wide 
Web Consortium (W3C) has developed and encouraged the 
use of standards for an accessible web, known as Web Con-
tent Accessibility Guidelines (WCAG), as well as standards for 
making rich, dynamic page content more easily parsed by a 
screen reader, ARIA. However, these guidelines have yet to 
be adopted as standard practice among many developer com-
munities, and they are not retroactively applicable to websites 
that no longer have active developers, such as those of local 
stores, restaurants, or community centers [19]. 

Furthermore, even if a website does comply with WCAG stan-
dards, it is not guaranteed to deliver a satisfying user expe-
rience, and may still contain obstacles if certain expected in-
formation is missing [2]. In such cases, it may not be clear to 
end users whether they should try searching linearly through 

the entire page, or look for the information on a different 
page. Recently, Bigham, et al. have called this the prob-
lem of “Not Knowing What You Don’t Know” for blind web 
users [15]. Essentially, not knowing if a particular piece of 
information is inaccessible via a screen reader, merely chal-
lenging to access, or not present on the page at all can lead 
to time draining searches through the DOM. Perhaps most 
prominently, Bigham, et al. have proposed a variety of solu-
tions to the problem of web accessibility for blind end users, 
including a scripting frameworks for developers and users 
to collaborating improve accessibility [10, 14], real-time on-
demand captions of images by remote crowd workers [13, 12, 
66, 41], and screen readers designed to be accessible on-the-
go [25, 16]. These solutions target important accessibility 
problems—lack of developer expertise in building accessible 
websites, lack of ways to get around barriers caused by visual 
information, and lack of access to keyboard-navigable screen 
readers—and inform our design goals for Arbility. 

Crowdsourced User Interface Control 
Arbility expands on previous research investigating the use of 
crowds to control existing user interfaces, often as solutions 
to accessibility challenges currently beyond the state-of-the-
art of automated methods. Using a remote desktop access 
tool like VNC provides full access to and control of the target 
machine, meaning that it requires having access to a fully-
trusted party as the remote user — a signifcant limiting factor 
in the availability of any such system. 

Legion [40] mitigates this problem by fltering out potentially 
bad actors by requiring consensus between multiple crowd 
workers who click to control an interface. Legion makes 
aggregated control possible, but only captures mouse clicks 
and key presses, which limits the kinds of actions that crowd 
workers can take. For example, it is not possible to propose 
mouseover events or to scroll to a different part of the page. 
By letting the end user be the leader, Legion was success-
fully used for Programming by Demonstration (PBD) appli-
cations creating macros for Google spreadsheets and creating 
mash-ups and controlling existing desktop applications with 
the crowd. Further, it is not possible to replay crowd work-
ers’ previous interactions using only pixel/coordinate infor-
mation without any semantic information, unless subsequent 
browsing sessions have the exact same page state and window 
confguration (location and dimensions, scroll position, etc.). 

Salisbury et al. [60] and Loparev et al. [47] explored alterna-
tive real-time mediation strategies for integrating the input of 
multiple crowd workers on a control task. Researchers have 
experimented with asking crowd workers to recognize inter-
action patterns from the users’ completion of a range of dif-
ferent web browsing tasks [39]. Arbility builds on this re-
search by enabling the hand-off of web browsing tasks so 
workers can complete these tasks on the end user’s behalf. 

Web Automation and Scripting 
Arbility includes a PBD component that records and can re-
play actions that remote crowd workers take. Arbility is 
one of several PBD web activity recording and automation 
tools, such as WebVCR [5], ActionShot [46], PLOW [3], 
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and CoCo [43]. Extensive reviews of existing PBD systems 
can be found in [21, 58]. There are also several non-PBD 
web automation tools. Chickenfoot [17] allows users to 
script browser automation using a high-level programming 
language. Smart Bookmarks [29] can be generated that are 
essentially replay scripts of web browsing sessions to restore 
an entire bookmarked session state. Inky [48] allows users to 
interact with the web via a relaxed command-line interface. 
However, prior web automation systems require that macros 
be created (either through programming or by demonstration) 
before the end user can perform the task, meaning they cannot 
be used when users encounter new accessibility barriers. 

SYSTEM DESIGN & FEATURES 
We divide our discussion of Arbility into two sections: our 
design goals and the resulting design. 

Design Goals 
The design of Arbility was infuenced by prior studies on the 
types of challenges that blind web users face, a set of guiding 
principles grounded in user-centered design, and feedback 
from pilot studies. 

Challenges Blind Users Face when Using the Web 
Researchers have studied and categorized the types of ac-
cessibility barriers that blind users face on inaccessible web 
sites [56, 18, 57, 15]. Broadly, there are three primary types 
of accessibility barriers that we designed Arbility to address: 

• Barriers caused by visual information. Many websites
lack ARIA labels, convey information in images, or embed
information in visual style. These types of mistakes can
occur even on websites that are otherwise usable and ac-
cessible [56]. For example, a restaurant might use red text
to identify spicy items on their menu, [15] or a program
guide for an HCI conference might use background images
to indicate best paper awards. Both conventions are invisi-
ble to screen readers.

• Known unknowns. Blind web users who are unable to
fnd a given piece of content on a page cannot be sure if
they are unable to fnd it because the page is inaccessible,
or because the content does not exist on the page [15]. This
applies even to sites that are completely accessible, as there
is no way for users to be certain they have complete infor-
mation, short of navigating the page’s source code.

• Lacking keyboard navigability. Blind users typically rely
on keyboard navigation to interact with a page. However,
some pages might not be keyboard navigable for three pri-
mary reasons. Some sites require mouse interaction be-
cause they were programmed to listen to mouse events
(press, release, move, etc.) Other sites (including the latest
versions of the UIST and CHI program guides) might require
interaction on elements that are not typically keyboard-
selectable or clickable, such as a generic <div/> or head-
ing, respectively. Alternatively, a site might lack keyboard
navigability because the information is not structured in a
way that is easy to digest (e.g., misleading tab ordering) or
from web developers confusing structure with content.

Arbility helps users overcome all three types of barriers. 

Guiding Principles 
Broadly speaking, the goal of access technology is to increase 
its users’ independence and agency. Blind users generally 
place a high value on autonomy [1]. Thus, the frst guiding 
principle of Arbility was to ensure that the end user retains 
control of their browsing session even as remote crowd work-
ers provide assistance. Interactions with Arbility should re-
fect the fact that the blind end user is the task expert, whose 
goal is to guide remote helpers through a rote task. 

We also wanted to try to ensure that end users could trust the 
actions proposed by remote users. As we will discuss in the 
future work section, we treat trust as a different design goal 
than ensuring privacy, which is a feature that Arbility leaves 
to future work. This means that when an end user receives 
a proposed action from a crowd worker, they can trust that it 
will not be nefarious. We address the issue of trust by allow-
ing end users to examine crowd workers’ proposed actions — 
being able to see what elements they affect and how. 

Finally, we wanted Arboretum to ft users’ existing workfows 
— to allow them use their preferred screen reader and nav-
igation methods. We designed Arboretum to allow users to 
interact with it like any other browser, except that they can 
also easily toggle a shared browsing session as needed. 

Guidance from Pilot Studies 
In addition to the above considerations, there were several 
practical interface design guidelines from pilots of Arbility 
with a blind web user. These pilots helped ensure that Arbility 
itself is accessible and usable. 

Arbility and Arboretum Features 
The resulting design of Arbility is illustrated in Figure 1. Ar-
bility consists of two windows: a browser window and an 
administrative panel. The browser window mostly behaves 
like a standard web browser. End users interact with web 
content as normal, through a third-party screen reader like 
JAWS, NVDA, or VoiceOver. When the end user wants to 
seek help from crowd workers, they use the administrative 
panel, where they can toggle web session sharing, communi-
cate with crowd workers, remove specifc workers from the 
shared browsing session, or mark a task as completed. 

Arbility also embeds a web server as part of the browser. This 
server serves a page that mirrors the DOM state of the end 
user’s browser, without sharing the underlying code. When 
remote users visit the served page, it appears to be exactly 
the same as the page the end user is using, augmented with a 
chat window panel, where they can interact with the end user. 
This page mirroring is done through Arboretum, which we 
will describe in more detail below. 

Mirroring Web Pages with Arboretum 
Everything that is rendered by a web browser (what end users 
interact with and see) is specifed by the page’s Document 
Object Model (DOM), a tree structure where every node is an 
element on the page. Developers write web pages by writ-
ing code that creates and manipulates the DOM, using the 
three fundamental web languages. The HyperText Markup 
Language (HTML) specifes the initial content and structure 
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of the page’s DOM. Cascading Style Sheets (CSS) control the 
visual appearance of the DOM, such as colors and positions. 
JavaScript defnes the page’s behavior by specifying how the 
DOM should change in reaction to user input and other events. 

When a page is shared with a remote user through Arboretum, 
the page’s DOM and appearance are shared2. Unlike the naïve 
approach of sending a link to remote helpers, sharing the cur-
rent page’s DOM allows browsing sessions to be shared even 
if they involve password-protected pages. Another naïve ap-
proach to page sharing would be to share the page’s source 
(HTML, CSS, and JavaScript). However, this would lead to 
diverging DOM states as the end user and remote helper per-
form different actions on the page. Instead, Arboretum strips 
the page’s JavaScript code and propagates DOM changes to 
remote clients dynamically. 

However, in testing Arboretum with external websites, we 
found that simply sharing the DOM with the JavaScript 
stripped from it can lead to access issues with some types 
of external resources, such as images or style sheets, at the 
original web server’s discretion. Thus, in addition to sharing 
the DOM, Arboretum also re-routes references to external re-
sources so that they are served directly from the Arboretum 
server. This ensures that remote workers will be able to see 
the same content as the end user. 

Finally, in order to allow remote users to interact with the 
page content and with the end user, Arboretum’s web server 
attaches extra snippets of JavaScript to the pages that it serves 
up. These extra snippets of JavaScript: 1) add a chat widget to 
the side of the served webpage that lets workers interact with 
the end user, 2) modify the remote worker’s DOM to always 
refect the DOM content of the end user, and 3) capture the 
remote worker’s input events and send them back to the end 
user’s browser, where they can decide how to act on them. 

In sum, Arboretum creates a “mirror” DOM tree that is mod-
ifed to strip out JavaScript that would keep its DOM out of 
sync with the end user’s, adds code to allow remote work-
ers to communicate back with end users, keeps the DOM of 
remote users and the end user in sync, and re-routes any ex-
ternal resources to ensure the remote workers see the same 
content as end users. 

Chatting with Remote Crowd Workers 
In order to allow end users to effectively convey their goals 
to remote crowd workers, Arbility includes a text-based chat 
channel connecting the end user and remote crowd workers. 
This chat channel remains open throughout the shared brows-
ing session, which makes it easy for crowd workers to ask 
clarifcation questions for poorly worded requests. Whenever 
crowd workers post a new message or join the channel (after 
choosing a username), Arbility uses audio notifcations to no-
tify the end user. End users can also remove crowd workers 
from the browsing session (by typing /boot <user>) or 
mark a task as successfully completed (/done). 
2This explanation is slightly simplifed — Arboretum can also share 
important variables that are not technically part of the DOM, such 
as the value of an <input/> element or the visual contents of a 
<canvas/> element. 

Figure 2. When a remote client worker proposes a page action, a de-
scription of that action is sent to the end user for approval. The end user 
can perform one of four actions: 1) accept the action, which will perform 
it on their browser; 2) reject the action; 3) focus which will direct their 
keyboard focus and screen reader to the target element; or 4) request 
a label, which will ask a crowd worker to replace the ARIA label of the 
target element. 

Proposing Page Actions 
For information seeking tasks, such as asking a question 
about the content of an image or whether the page contains a 
piece of information, the Arbility chat feature combined with 
Arboretum’s session sharing is suffcient for end users to ask 
and answer questions. However, many kinds of tasks also 
require users to interact with page elements (e.g., when in-
formation is hidden behind collapsible panels or only appears 
when the cursor is hovering on a page element. Thus, Arbil-
ity allows remote users to propose actions for the end user to 
perform. These actions can include any user interaction (e.g., 
mouseover, touchstart, etc.). 

Retaining Control and Trust for End Users 
One of the design goals of Arbility is to give the end user ul-
timate control over their browser. Thus, rather than allowing 
crowd workers to directly interact with the end user’s page, 
any action that a crowd worker proposes must be approved 
by the end user, as Figure 2 shows. If the end user approves 
that action, then Arbility emulates the action proposed by the 
crowd worker on the end user’s browser. 

In order to allow the end user to make an informed decision 
about whether they should accept a proposed action, Arbil-
ity automatically generates a textual description of the pro-
posed action. This description includes the type of event (e.g., 
mousedown, mouseover, etc.), the event target, and any 
other relevant information. In order to describe the event tar-
get, Arbility uses (in order of precedence): ARIA labels, text 
content, or tag names. If the end user needs more information 
about a given element, they can also quickly give the target 
element keyboard focus in their screen reader via a “focus” 
shortcut in the chat interface or request a label from remote 
workers. All of these features are designed to allow the end 
user to trust that any actions they approve will not have any 
unintended consequences. 

Minimizing the Learning Curve for Crowd Workers 
In order to minimize the learning curve for crowd workers, 
we designed Arbility to allow them to propose page actions 
in as natural a way as possible — by interacting directly with 
the mirrored page. Thus, when a crowd worker clicks a but-
ton or moves their mouse over a relevant element, Arbility 
automatically sends an action proposal to the end user. 

However, if implemented naïvely, when a crowd worker 
clicked a button on the page, this feature would fre a se-
ries of mousemove and mouseover events (as the worker 



moves their mouse to the target element) and mousedown, 
mouseup, and click events as the worker is clicking the 
element. Assuming the end user only cared about the click 
event, there would be many false positives and erroneous in-
termediate events. To address this issue, Arbility only pro-
poses events for elements and events that are associated with 
at least one JavaScript event listener. Workers do not need 
to understand different event types; when they demonstrate 
an action on the page, Arbility’s event hooks only listen for 
events that have associated callbacks. Although this does not 
fully solve the issue of false positives (web pages might have 
erroneous event listeners or listeners that could be triggered 
when the remote user intended to perform another action), 
it does mitigate it greatly. Remote crowd workers can also 
delete actions that they did not intend to propose. 

Storing and Recalling Previous Actions 
After a shared browsing session is complete, Arbility stores 
the actions that were approved. The next time that user loads 
the same page, Arbility will offer to repeat these actions on 
the newly loaded page. As the implementation section below 
discusses, these new events are re-aligned to be robust with 
respect to page changes. A list of suggested commands is 
displayed above the chat panel, as Figure 4.4 shows. 

IMPLEMENTATION 
Arbility is built as an Electron [31] application that builds 
on Arboretum, a Node.JS [22] application. Both systems are 
implemented with the TypeScript programming language and 
ReactJS (in the case of Arboretum, the ReactJS code imple-
ments in the worker-side pages). 

As Figure 3 illustrates, Arbility has two components: 

• 3A: A chat interface for interacting with crowd workers 

• 3B: a chromium browser that the end user interacts with 
through their preferred screen reader. 

Arbility interfaces with Arboretum, which itself has two sep-
arate components: 

• 3C: A Web Server that serves a dynamic page for remote 
crowd workers. The page is a transformed version of the 
contents of the end user’s Chromium browser. 

• 3D: A DOM state tracker that interacts with the Arbility 
Chromium browser through the DevTools Protocol to track 
and update the DOM state and updates, pull any necessary 
external resources, and simulate input events from remote 
workers. This component handles many complexities of 
document mirroring, including dealing with nested frames, 
retargeting resources, removing JavaScript, and more. 

Communicating via the DevTools Protocol 
Arboretum uses the Chrome DevTools Protocol [23] (for-
merly known as the Remote Debugger Protocol). This pro-
tocol gives Arboretum access to the internal state of every 
DOM element on the end user’s browser. Because it uses the 
DevTools protocol, Arboretum is robust with respect to in-
ternal browser changes and can work with any browser that 
implements this protocol. 

Arbility also uses the DevTools protocol to determine which 
parts of a page listen to user input events (which in turn de-
termines whether an action from a remote user is ignored 
or should propose an action on the end user’s page). When 
the end user “accepts” an action proposed by a remote crowd 
worker, Arboretum emulates that event on the end user’s ma-
chine by injecting the end user’s page with code that simulates 
the event on their client. 

Synchronizing Distributed Clients 
Arboretum uses WebSockets to communicate between the 
end user and remote clients. These WebSockets communi-
cate both chat messages and DOM state changes dynamically. 
Arboretum also uses ShareDB [62] to synchronize the DOM 
between the end user and remote crowd workers. 

Remembering and Retargeting Prior Page Actions 
Whenever an end user accepts a proposed action from a crowd 
worker, Arbility stores the details of that action (the event 
type, target, and other necessary details) and a snapshot of the 
DOM tree when that action was performed in a JSON fle on the 
end user’s browser. However, pages change over time, which 
can invalidate the stored actions if implemented naïvely. 

For example, suppose the end user visits a page that has the 
following DOM tree, which is shortened and labeled for the 
sake of simplicity: 

A

B C

D E

and the remote crowd worker proposes an action on node B. 
The next time that user visits the same page, the DOM tree has 
been modifed and now has the following DOM tree: 

A

B C

X

Y

Arbility—which does not have the beneft of clear labels like 
those in these diagrams and must work with DOM trees that 
are signifcantly larger—must then determine what node is 
equivalent to node B in this new DOM tree. In order to do so, 
it frst fattens both trees using a depth frst traversal. 

It then computes a “similarity” score between pairs of DOM 
nodes in the different trees. In our current implementation, 
nodes that have the same tag name are considered the most 
similar (+100 in the similarity score). Nodes with similar 
DOM attribute names and values are also scored highly (+7 
per matching name/value pair and −7 for every non-matching 
name/value pair). Arbility then uses the Needleman-Wunsch 
sequence alignment algorithm (most frequently used to match 
DNA sequences) to determine the best mapping between DOM 
nodes in the new and old trees, with a gap penalty of −2. 
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Figure 3. A system diagram of Arbility, Arboretum, and their interactions. Arbility bundles a chat interface (A) and web browser (B). Arboretum 
includes a web server (C) and module for mirroring pages for remote users (D). The end user can interact with the browser as normal or by accepting 
input events that are proposed by remote crowd workers. The end user can also discuss task specifcs with remote workers through the chat interface. 

We tuned these constants based on preliminary experiments 
using Arbility on several frequently-changing webpages. For 
the two trees described earlier, assuming that nodes that are 
in both trees (A, B, and C) have high similarity scores, we 
would end up with the following alignment: 

A B CD

A B X CY

E

We chose to use sequence matching, rather than a global sim-
ilarity computation, to ensure that the DOM structure and the 
order is accounted for in the matching process. 

EVALUATION 
In order to test Arboretum’s ability to seamlessly share web 
page content and interactions between end users and groups 
of remote workers, and to test the usability and beneft of Ar-
bility for blind participants, we performed a laboratory evalu-
ation with 9 blind participants consisting of 3 interactive web 
tasks followed by a post-study survey. 

Participants 
We recruited 10 blind participants by posting on Twit-
ter and through mutual connections in the blind commu-
nity. We omitted one participant who—unbeknownst to the 
study coordinator—completed the user study on their mobile 
phone. Because both Arbility and our study were designed 

for desktop browsers, this participant faced navigational chal-
lenges that other participants did not—specifcally, the partic-
ipant accidentally closed a relevant tab during the task. How-
ever, this participant did successfully complete all of the study 
tasks using Arbility through their phone. 

Of the remaining 9 participants, 8 of them had 16 or more 
years of experience using a screen reader. Participants were 
compensated $35.00 for an hour-long remote study. This rate 
of pay is commensurate with participants’ specialized skill in 
using a screen reader, a necessary and hard-to-fulfll prereq-
uisite for our study. Additionally, we recruited crowd work-
ers from Amazon Mechanical Turk (MTurk). Crowd workers 
were required to have a 95% approval rate and be located in 
the United States. We recruited these workers using the re-
tainer model [9, 12] via LegionTools [38]. The retainer model 
automatically posts tasks to MTurk as needed, and contin-
uously adjusts worker compensation based on demand (i.e. 
if the retainer is empty then compensation will be higher, if 
the retainer is full then compensation will be lower). Workers 
were compensated 50–100 cents for a task taking 300 seconds 
on average for an effective pay rate of $6–12 per hour. 

Setup 
Every instance of the study was conducted with remote par-
ticipants, each of whom interacted with a version of Arbility 
that was slightly modifed to work within the browser. Using 
a browser-based version of Arbility allowed our participants 
to use the tool without needing to install it. All of the in-
teractions with this browser-based were the same as those in 
the desktop version. The study asked the blind participants to 



Task Web Page
(1) Calorie Counter 

 

(2) Gary Turk Video 

 

(3) Noodlehead Menu 

Task Question
How many calories are needed to lose 1 
pound?

Name the person who did sound 
engineering for the video.

Name one $8 noodle dish that is 
indicated as spicy.

Reason for Inaccessible Content
Uses inaccessible <canvas> elements to 
display information.

Requires mousedown event whereas 
screen readers simulate click events.

Spiciness is indicated by red text 
styling only.

Figure 4. The web pages (1) Calorie Counter, (2) Gary Turk Video, and (3) Noodlehead Menu were selected from Bigham, et al. to provide a represen-
tative sample of inaccessible web content. Page interactions proposed by crowd workers, such as clicking the ‘Show More’ <div/> in (2), are recorded 
and replay-able from the Arbility chat panel upon visiting the same page later on. This allows blind end users to overcome the same obstacles in the 
future without having to call on crowd workers again, reducing cost and increasing indepdendence in the long term. 

complete three information fnding tasks. Each task consisted 
of a page with task instructions, a link to the Arbility shared 
browser page, and a task question whose answer was located 
on the shared browser page. To avoid biasing participants in 
favor of using Arbility, the task instructions explicitly stated 
that the answer might not be inaccessible (i.e., participants 
did not know ahead of time if a given task posed an acces-
sibility challenge or not). The Arbility shared browser page 
contained two panels: a chat panel for communicating with 
remote workers and a content panel containing the original 
content of the in-the-wild web page. From the task instruc-
tions page, participants were asked to click a link to launch 
the shared web page in another browser tab. 

Tasks 
In order to choose a representative set of tasks, we frst asked 
our pilot participants for examples of inaccessible page el-
ements they typically encountered. We found that the sites 
they found to be most problematic included pages with con-
tent embedded in untagged images/canvases, encoded using 
CSS styling, or hidden behind improperly formatted page ele-
ments. These types of problems were represented in the tasks 
used by a study from Bigham et al. [15], so we chose a sub-
set of the tasks from that study that were deemed inacces-
sible by WCAG 2.0 standards. The specifc inaccessible el-
ements were (1) important information contained in images 
lacking alternative text, (2) poorly constructed forms and but-
tons, and (3) conveying information through the visual styling 
of text. The specifc pages corresponding to these inaccessi-
ble elements were (1) a Calorie Counter page, (2) a video 
page for the musician Gary Turk, and (3) a menu page for the 

Noodlehead restaurant (Figure 4). Blind participants were in-
structed to retrieve a specifc piece of information from each 
web page (i.e., the answer to the task question). In all cases, 
the requested information was inaccessible based on WCAG 
2.0 standards (Figure 4), which meant that blind participants 
would most likely need to collaborate with remote sighted 
workers in order to retrieve the piece of information. 

In running our study, we closely followed the methodology 
of Bigham et al. [15]: 

• Tasks were run remotely, allowing participants to use their 
preferred screen reader and environment, which prior work 
has considered more ecologically valid [11, 55]. 

• All widely-used screen readers (Jaws, NVDA, VoiceOver) 
were represented in our group of recruited participants. 

• Task instructions were identical to those in [15] except for 
added instructions about requesting crowd assistance via 
the Arbility shared browser page. 

Collaboration 
In order to retrieve the inaccessible information, blind end 
users collaborated with sighted remote workers, primarily 
through two interaction types: natural language text-based 
chat and proposed page interactions (i.e., clicking, scrolling, 
hovering on particular page elements). Interactions had to be 
proposed by crowd workers via the chat panel and were op-
tionally accepted, rejected, or ignored by end users. For ex-
ample, in the Gary Turk Video task, the requested information 
could only be retrieved by clicking an incorrectly specifed 
DOM element that was listening for the mousedown event— 
specifcally, a “Show More” <div/> element that was styled 



Accuracy (%) Counter Video Menu
Blind (Solo) 0 63 14

Sighted (Solo) 100 90 86
Blind+Sighted (Arbility) 100 89 89

Average Time to Success (s) Counter Video Menu
Blind (Solo) n/a 108 133

Sighted (Solo) 62 93 82
Blind+Sighted (Arbility) 418 240 304

Figure 5. When blind users collaborate with sighted workers via Ar-
bility, their information fnding accuracy becomes comparable with that 
of solo sighted workers (Upper Table). However, these accuracy gains 
come at a cost in speed, taking on average 3–4 times as long as sighted 
workers acting alone (Lower Table). 

as if it were a <button/> element (Figure 4). Activating 
this element would not usually require a click interaction 
via the keyboard (but merely a keypress), and so execut-
ing a click may have been unintuitive when navigating via 
a screen reader. However, since the element visually resem-
bled a button, clicking would have been an intuitive interac-
tion when navigating via visual-motor skills and the mouse. 
Hence, crowd workers were able to propose the mousedown 
event for blind end users to accept and retrieve the requested 
piece of the information. 

Results 
In comparison with the baseline performance of solo blind 
and sighted participants from Bigham, et al., blind partici-
pants who used Arbility were dramatically more accurate on 
every task when compared with those who did not [15]. In 
particular, Arbility allowed blind participants to come very 
close to matching the performance of their sighted counter-
parts (Figure 5). This is most evident on the Calorie Counter 
task, for which solo blind participants never reported the cor-
rect answer (0% accuracy), solo sighted participants always 
reported the correct answer (100% accuracy), and blind par-
ticipants collaborating with sighted participants via Arbility 
also always reported the correct answer (100% accuracy). 
Effectively, Arbility removed the barriers to information ac-
cess by transferring web navigation capability from sighted 
to blind users, at a cost of time and money. Although Arbil-
ity allows blind end users to successfully complete informa-
tion fnding and navigation tasks previously impossible via a 
screen reader, this transference of web browsing capability— 
from remote workers to end users—is by no means instan-
taneous. On average, blind participants using Arbility took 
3–4 times longer than their sighted counterparts on the same 
tasks (Figure 5), most likely because collaboration takes time. 
Blind participants needed to give directions to crowd workers 
via the chat panel, and to accept or reject any of their pro-
posed actions. However, if the information is valuable enough 
to the end user, this cost could be worth paying, as it is in the 
case of remote video assistance systems like Aira [20]. In the 
next section, we report blind participants’ subjective assess-
ments of Arbility’s usability and discuss their recommenda-
tions for improvements. 

FEEDBACK AND DISCUSSION 
In a post-study survey, we asked participants to rate their 
agreement with a set of statements based on the Technology 
Acceptance Model (TAM). TAM is a popular information sys-
tems acceptance model intended to predict and explain why 
end users end up adopting tools, based on two primary cri-
teria: ease of use and perceived usefulness [53, 27]. Partic-
ipants rate aspects of the tool’s usability on a scale of 1–7 
where 1 is “strongly disagree” and 7 is “strongly agree”. In 
addition to the TAM survey, we also asked participants to give 
open-ended feedback about the positive and negative aspects 
of Arbility. The following sections summarize the key quan-
titative and qualitative trends that emerged from these two 
different forms of feedback. 

Practical and Real-World Applicability 
Responding to Arbility’s perceived usefulness (specifcally, 
the statement: “Using a shared web browser could make it 
easier to navigate the web”), participants expressed a mean 
level of agreement of 5.67 (SD=0.87), indicating a positive 
view of the tool’s practical applicability to real-world sce-
narios, which participants felt were well-represented by our 
selection of tasks from [15]. Indeed, participants had the fol-
lowing to say: 

“It offers a practical way to get sighted help, when that 
help may not be available or desirable in person.” (P4) 

“The problems posed in the tasks were very realistic. I 
have either encountered similar issues on web pages, or 
could easily imagine them happening. The assistants 
were able to provide answers that the screen reading 
software had no way to fnd.” (P5) 

“It is great to get quick answers to questions that can’t 
be answered on an inaccessible page. A lot of time could 
be saved, and it could save me a lot of frustration.” (P6) 

These comments touch on our guiding principles in develop-
ing Arbility: preserving independence and agency for blind 
end users who may not want to request in-person assistance 
from friends or family, overcoming frequently-occurring web 
navigation obstacles, and saving blind end users time (in 
comparison with the time required to request and receive in-
person assistance). Additionally, participants were enthusi-
astic enough about the idea to make suggestions for future 
applications: 

“This is a good idea, especially for use on-the-fy, pos-
sibly in travel or other business settings. . . Another way 
I could see it being really useful is for people needing to 
access government services that have been moved to an 
online-only model but they don’t have the access and/or 
skills. This could be a really cool part of any ‘assisted 
digital’ model! Having a real person helping instead of 
a chatbot would be a big draw!” (P3) 

“Could this concept be expanded to things such as help 
with flling out problematic forms, or perhaps Captchas 
that don’t have an audio alternative?” (P7) 



Protecting End User Privacy 
In considering their behavioral intent to use a shared web 
browsing tool like Arbility (specifcally, the statement: “I 
would be a frequent user of a shared web browser”), par-
ticipants expressed a mean level of agreement of 3.89 
(SD=1.17), indicating a slightly negative view of how fre-
quently they might need to—or want to—rely on such a tool. 
This is somewhat contrary to their positive-leaning attitude 
toward the idea of shared browsing (specifcally, “Web nav-
igation through shared browsing is a good idea”; µ=4.56, 
SD=1.33) as well as the tool’s ease-of-use (specifcally, “I 
fnd the shared web browser easy to use”; µ=4.89, SD=0.78). 
Although positive-leaning, one common reason for hesitation 
is that Arbility is not entirely privacy preserving. Of the 9 
participants, 4 expressed reservations about the implications 
for web browsing privacy: 

“Privacy is a concern. Although the mechanism itself 
ensures that no personal data is shared, the content of 
the website may do so (as was the case with the calorie 
counter).” (P4) 

“I’m strange, but I feel under pressure when being ob-
served while someone waits helpfully. It isn’t a problem 
for someone else to see many of sites that I browse, but 
I fnd I tend to have the most trouble when I am on sites 
that I would hesitate to share because of privacy con-
cerns.” (P6) 

Deprioritizing Accessible Web Development 
In considering the extent to which using a tool like Arbil-
ity aligns with their values (specifcally, the statement: “I 
like the idea of shared web browsing based on the similar-
ity of my values and the societal values underlying its use”), 
participants expressed a mean level of agreement of 4.67 
(SD=1.58), suggesting some ambivalence about the society-
wide implications of the development and use of a shared 
browser for overcoming accessibility obstacles. Of the 9 par-
ticipants, 3 expressed concerns that a shared web browsing 
system like Arbility—if widely deployed—would discourage 
or demotivate the development of web content that is acces-
sible from the start. 

“Such a system, in general, would possibly allow de-
velopers to avoid making creating accessible content a 
priority.” (P2) 

“I think this type of system sends the wrong message to 
the non-disabled web developer community. It suggests 
that they don’t have to solve accessibility problems, be-
cause someone else will do it. The real solution is to put 
more effort into accessible and inclusive design across 
the web industry.” (P5) 

In principle, the authors agree that it is preferable to develop 
standards and best practices to guarantee that newly devel-
oped web content prioritizes accessibility. We do not propose 
Arbility as a universal solution to the problem of web acces-
sibility, but rather as an ad-hoc solution to a problem that un-
deniably exists today. In the next section, we discuss some 
of the future improvements and design challenges opened by 
Arbility and Arboretum. 

FUTURE WORK 
Arbility and the underlying Arboretum architecture open up 
many opportunities for future research, both inside and out-
side the domain of accessibility. Much of the feedback re-
ceived from blind participants during this study would be 
equally applicable to sighted users of a shared browser tool, 
especially with respect to privacy concerns and workfow in-
tegration and automation. 

Addressing Privacy Concerns 
The most common response from user study participants was 
that they would like to see privacy concerns addressed to en-
sure that remote users would not be able to see sensitive in-
formation that might be on the page. While privacy was not 
the focus of this iteration of Arbility, there are several non-
technical solutions that could work with Arbility’s existing 
architecture: using an organized set of trusted crowd work-
ers specifcally for accessibility tasks, like Aira’s professional 
agents [20] or encouraging users to share content with fam-
ily and friends in situations where they are concerned about 
privacy. Privacy concerns are highly subjective, and it is un-
likely that 100% of privacy issues can be solved with tech-
nology alone, but we plan to explore how automated tech-
niques might alleviate privacy concerns, as has been explored 
in other crowdsourcing applications [35, 64]. In particular, 
we plan to explore ways to give end users fne-grained con-
trol over which elements remote users can and cannot see. 

Better Automation via Hybrid Intelligence 
Arboretum could also be used to create hybrid intelligence 
workfows that coordinate actions between AI agents, crowd 
workers, and end users when trying to complete a task. In this 
model, crowd workers and the end users would fll in where 
automated techniques fall short, allowing both maximum ro-
bustness while requiring minimum human effort [37]. 

CONCLUSION 
In this paper, we introduced Arboretum, a novel shared web 
browsing architecture for seamlessly transferring web brows-
ing tasks and Arbility, a web accessibility tool that allows 
blind end users to hand off targeted visual interaction tasks 
to remote crowd workers. Our evaluation of Arbility showed 
that it allows blind users to perform web tasks that would have 
otherwise been diffcult or impossible. This demonstrates Ar-
boretum as an open source platform capable of making fu-
ture progress on real-world problems via interactive, hybrid-
intelligent systems and general web automation. 
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